Меню

Аккумуляторы для ветрогенераторов своими руками

Сделаем ветряной генератор своими руками

ветряной генератор

Зачастую у владельцев частных домов возникает идея о реализации системы резервного электропитания. Наиболее простой и доступный способ — это, естественно, бензиновый или дизельный генератор, однако многие люди обращают свой взгляд на более сложные способы преобразования так называемой даровой энергии (солнечного излучения, энергии текущей воды или ветра) в электричество.

Каждый из этих способов имеет свои достоинства и недостатки. Если с использованием течения воды (мини-ГЭС) все понятно — это доступно только в непосредственной близости от достаточно быстротекущей реки, то солнечный свет или ветер можно использовать практически везде. Оба этих метода будут иметь и общий минус — если водяная турбина может работать круглосуточно, то солнечная батарея или ветрогенератор эффективны только некоторое время, что делает необходимым включение аккумуляторов в структуру домашней электросети.

Поскольку условия в России (малая длительность светового дня большую часть года, частые осадки) делают применение солнечных батарей неэффективным при их современных стоимости и КПД, наиболее выгодным становится конструирование ветрового генератора. Рассмотрим его принцип действия и возможные варианты конструкции.

Так как ни одно самодельное устройство не похоже на другое, эта статья — не пошаговая инструкция, а описание базовых основ конструирования ветрогенератора.

Общий принцип работы

ветрогенератор

Основным рабочим органом ветрогенератора являются лопасти, которые и вращает ветер. В зависимости от расположения оси вращения ветрогенераторы делятся на горизонтальные и вертикальные:

  • Горизонтальные ветрогенераторы наиболее широко распространены. Их лопасти имеют конструкцию, аналогичную пропеллеру самолета: в первом приближении это — наклонные относительно плоскости вращения пластины, которые преобразуют часть нагрузки от давления ветра во вращение. Важной особенностью горизонтального ветрогенератора является необходимость обеспечения поворота лопастного узла сообразно направлению ветра, так как максимальная эффективность обеспечивается при перпендикулярности направления ветра к плоскости вращения.
  • Лопасти вертикального ветрогенератора имеют выпукло-вогнутую форму. Так как обтекаемость выпуклой стороны больше, чем вогнутой, такой ветрогенератор вращается всегда в одном направлении независимо от направления ветра, что делает ненужным поворотный механизм в отличие от горизонтальных ветряков. Вместе с тем, за счет того, что в любой момент времени полезную работу выполняет только часть лопастей, а остальные только противодействуют вращению, КПД вертикального ветряка значительно ниже, чем горизонтального: если для трехлопастного горизонтального ветрогенератора этот показатель доходит до 45%, то у вертикального не превысит 25%.

Поскольку средняя скорость ветров в России невелика, даже большой ветряк большую часть времени будет вращаться достаточно медленно. Для обеспечения достаточной мощности электропитания от должен соединяться с генератором через повышающий редуктор, ременной или шестеренчатый. В горизонтальном ветряке блок лопасти-редуктор-генератор устанавливается на поворотной головке, которая дает им возможность следовать за направлением ветра. Важно учесть, что поворотная головка должна иметь ограничитель, не дающий ей сделать полный оборот, так как иначе проводка от генератора будет оборвана (вариант с использованием контактных шайб, позволяющих головке свободно вращаться, более сложен). Для обеспечения поворота ветрогенератор дополняется направленным вдоль оси вращения рабочим флюгером.

Наиболее распространенный материал для лопастей — это ПВХ-трубы большого диаметра, разрезаемые вдоль. По краю к ним приклепываются металлические пластины, приваренные к ступице лопастного узла. Чертежи такого рода лопастей наиболее широко распространены в Интернете.

На видео рассказывается про ветрогенератор, изготовленный своими руками

Расчет лопастного ветрогенератора

Так как мы уже выяснили, что горизонтальный ветрогенератор значительно эффективнее, рассмотрим расчет именно его конструкции.

Энергия ветра может быть определена по формуле
P=0.6*S*V³, где S — это площадь круга, описываемого концами лопастей винта (площадь ометания), выраженная в квадратных метрах, а V — расчетная скорость ветра в метрах в секунду. Также нужно учитывать КПД самого ветряка, который для трехлопастной горизонтальной схемы составит в среднем 40%, а также КПД генераторной установки, составляющий на пике токоскоростной характеристики 80% для генератора с возбуждением от постоянных магнитов и 60% — для генератора с обмоткой возбуждения. Еще в среднем 20% мощности израсходует повышающий редуктор (мультипликатор). Таким образом, окончательный расчет радиуса ветряка (то есть длины его лопасти) для заданной мощности генератора на постоянных магнитах выглядит так:
R=√(P/(0.483*V³
))

Пример: Примем требуемую мощность ветроэлектростанции в 500 Вт, а среднюю скорость ветра — в 2 м/с. Тогда по нашей формуле нам придется использовать лопасти длиной не менее 11 метров. Как видите, даже такая небольшая мощность потребует создания ветрогенератора колоссальных габаритов. Для более-менее рациональных в условиях изготовления своими руками конструкций с длиной лопасти не более полутора метров ветрогенератор сможет выдавать всего лишь 80-90 ватт мощности даже на сильном ветру.

Недостаточно мощности? На самом деле все несколько иначе, так как на самом деле нагрузку ветрогенератора питают аккумуляторы, ветряк же только заряжает их в меру своих возможностей. Следовательно, мощность ветроустановки определяет периодичность, с которой она сможет осуществлять подачу энергии.

ветрогенератор

В Интернете часто можно найти статьи под броскими заголовками наподобие «Ветрогенератор для отопления дома». На самом же деле, как вы уже могли понять из приведенных расчетов, постоянно поддерживать потребляющее несколько киловатт-часов электрическое отопление сможет разве что сеть из не одного десятка самодельных установок.

Предлагаем посмотреть еще один рассказ про ветрогенератор и его изготовление в домашних условиях

Выбор генератора

Наиболее логичным вариантом генераторной установки для самодельного ветряка кажется автомобильный генератор. Такое решение позволяет легко скомпоновать установку, так как генератор уже имеет и крепежные точки, и шкив для ременного мультипликатора. Купить и сам генератор, и запчасти к нему нетрудно. Кроме того, встроенное реле-регулятор позволяет непосредственно подключить его к 12-вольтовой аккумуляторной батарее, а к ней, в свою очередь — инвертор для преобразования постоянного тока в переменный напряжением 220В.

Но, как уже было сказано выше, КПД генераторов с обмоткой возбуждения достаточно низок, что весьма чувствительно для и без того маломощного ветряного генератора. Второй минус в том, что при разряженном аккумуляторе автомобильный генератор не сможет возбудиться.

В ряде самодельных конструкций можно встретить тракторные генераторы Г-700 и Г-1000. Их КПД ничуть не больше, полезным отличием являются лишь намагниченность ротора, позволяющая возбудить генератор даже без аккумуляторной батареи, и низкая цена.

ветрогенератор из ВАЗ

Некоторые авторы при постройке ветрогенераторов пользуются свойством обратимости коллекторных электродвигателей — принудительно вращая их ротор, с него можно снимать постоянный ток. Статор двигателей подобного типа состоит либо из постоянных магнитов, что более предпочтительно в наших целях, либо имеет обмотку. Для применения двигателя в режиме генератора она подключается к автомобильному реле-регулятору, чтобы обеспечить нужное напряжение. Рассмотрим подключение реле-регулятора на примере узла от ВАЗовской классики (оно удобно тем, что не объединено в один блок с щеточным узлом):

  1. Одну из щеток двигателя соедините с корпусом — это будет отрицательный полюс генератора. Сюда же надежно подключите металлический корпус реле-регулятора и клемму «-» аккумулятора.
  2. Клемму 67 реле соедините с одним из выводов статорной обмотки, второй временно с корпусом.
  3. Клемму 15 соедините через выключатель с положительным полюсом аккумулятора (при этом на обмотку подастся ток возбуждения). Придайте ротору вращение в том же направлении, что будет обеспечивать винт ветроустановки, и подключите между свободной щеткой и корпусом вольтметр. Если на щетке обнаружится отрицательный потенциал, поменяйте местами соединения статора с реле-регулятором и массой.

Основной особенностью подключения генератора постоянного тока к аккумуляторной батарее является необходимость в разделении их полупроводниковым диодом, не дающим аккумулятору разряжаться на обмотку ротора при остановке генератора. В современных автомобильных генераторах эту функцию выполняет трехфазный диодный мост, и мы также можем его использовать, параллельно соединив его фазы для уменьшения падения напряжения на нем.

Наибольшую же мощность можно снять с генератора, ротор которого состоит из неодимовых магнитов. Распространены конструкции на основе автомобильной ступицы с тормозным диском, по краю которого закрепляются мощные магниты. На минимальном расстоянии от них располагается статор с однофазной или трехфазной обмоткой.

Такой генератор хорош многим: он возбуждается уже при низких оборотах даже при севшем аккумуляторе, не требует обслуживания щеточного узла. Но при этом его выходное напряжение невозможно отрегулировать, так как оно зависит только от частоты вращения. Домашняя электростанция с генератором на неодимовых магнитах потребует подключения его к дополнительному инвертору для обеспечения зарядки аккумуляторной батареи в большом диапазоне скоростей ветра. Также это устройство часто называется контроллером заряда батарей.

ветрогенератор

Существует несколько различных вариантов реализации контроллера в зависимости от конкретного решения конструкции генератора. Так как у подобных самоделок большой разброс параметров, приведенную схему стоит рассматривать как иллюстрацию общего принципа устройства контроллера, а не как обязательное решение.

схема ветрогенератора

Как видно, эта схема рассчитана на использование в качестве генератора коллекторного электродвигателя. Если же вы использовали самодельный генератор переменного тока, добавьте диодный мост на его выход.

Напряжение с генератора через контрольный узел, состоящий из вольтметра и амперметра, подается на вход двух импульсных стабилизаторов. Зарядку аккумулятора осуществляет блок 2, в то время как задача блока 1 — защита от ухода генератора в разнос при сильном ветре и малом потреблнеии тока нагрузкой: при превышении напряжением порога, задаваемого движком потенциометра R3, блок 1 начинает подавать напряжение на подключенный к его выходу мощный нагрузочный резистор, о чем сообщает загорающийся светодиод LED2.

Читайте также:  Какой ток дает автомобильный аккумулятор

Нагрузка, не требующая точной стабилизации напряжения (например, низковольтные лампы накаливания), подключаются в обход стабилизатора к выводу диода D2.

Расчет мультипликатора

Генераторная установка имеет наклонную токоскоростную характеристику: с ростом оборотов ротора увеличивается максимальная отдаваемая им мощность. Следовательно, чтобы обеспечить наибольшую эффективность тихоходного ветрогенератора, нам понадобится мультипликатор с большим коэффициентом повышения.

Для самодельной конструкции наиболее оптимальное решение — это ременной мультипликатор: он прост в изготовлении и требует минимума станочных работ. Коэффициент повышения оборотов у него будет равен отношению диаметра ведущего шкива, связанного с осью винта, к диаметру ведомого шкива генератора. При необходимости передаточное число будет легко скорректировать заменой одного из шкивов.

При проектировании мультипликатора нужно учитывать как средние обороты лопастного узла, так и токоскоростную характеристику генератора. Если мы используем серийный автомобильный генератор, то ее без труда можно найти в Интернете, с самодельными же конструкциями, скорее всего, придется идти методом проб и ошибок.

ветрогенератор

Для примера возьмем распространенный тракторный генератор, о котором уже писали выше.

Взяв расчетную мощность нашей ветроустановки в 90 ватт, найдем точку на графике, соответствующую выходу генератора на эту мощность. При номинальном напряжении 14 В нам потребуется токоотдача не менее 6,5 А — согласно графику, это произойдет при оборотах чуть выше 1000 об/мин. Пусть винт нашей конструкции вращается ветром со скоростью 60 об/мин (ветер средней силы). Значит, нам потребуется как минимум двадцатикратное соотношение диаметров шкивов — для 70-миллиметрового шкива генератора шкив ветряка должен будет иметь диаметр почти полтора метра, что неприемлемо. Это недвусмысленно намекает, насколько мала эффективность ветрогенераторов такого типа — без сложного многоступенчатого редуктора, который сам по себе приведет к большим потерям мощности, вывести автомобильный генератор на рабочий режим практически невозможно.

Для сравнения, посмотрим на характеристики генераторов, используемых в ветрогенераторах промышленного изготовления. Например, генератор на постоянных магнитах ГВУ1000, по конструкции аналогичный описанной выше самоделке из автомобильного тормозного диска, всего при 200 оборотах в минуту выдает мощность в 1 киловатт. С другой стороны, обратной стороной является его значительные вес (34 кг) и цена (почти 70 тысяч рублей).

Мачта

Она не только обеспечивает безопасность эксплуатации ветряка (нижняя точка круга, описываемого лопастями, должна быть не ближе 2 метров к земле), но и позволяет ему максимально эффективно использовать энергию ветра, поток которого вблизи от земли становится более турбулентным.

Большая высота приводит к низкой жесткости мачты ветрогенератора и делает ее прочностной расчет достаточно сложным не только для мастера-любителя, но и для инженера. Можно перечислить лишь основные моменты:

  • Размещайте мачту возможно дальше от дома и деревьев, затеняющих воздушный поток. Кроме того, при сильном ветре возможно падение ветрогенератора на здание либо его повреждение деревьями;
  • Оптимальная конструкция мачты — это ажурная сварная ферма наподобие вышек электропередач, но в изготовлении она сложна и дорога. Простейший, но достаточно эффективный вариант — это несколько параллельных труб диаметром 80-100 мм, сваренных короткими швами между собой и забетонированных на глубину не менее метра в земле. Конструкцию из одной трубы крайне желательно усилить тросовыми растяжками, которые также крепятся к залитым в бетон опорам.
  • Для упрощения обслуживания ветряка его мачту можно сделать переломной: в этом случае при ослаблении растяжки, идущей в направлении перелома, мачту можно будет наклонить к земле.

Рассказ об очень простом ветрогенераторе из домашнего вентилятора

Дополнительное электрооборудование

Как уже было сказано выше, неотъемлемой частью ветряной электростанции является аккумулятор, берущий на себя питание потребителей. при его выборе нужно помнить, что чем больше его емкость, тем дольше он сможет поддерживать напряжение в сети, но при этом и дольше будет заряжаться. Приблизительное время работы можно определить как то время, за которое исчерпается половина емкости аккумулятора (после этого падение напряжения станет уже ощутимым, кроме того, глубокий разряд снижает ресурс свинцово-кислотных батарей).

Пример: Так, аккумулятор емкостью 65 А*ч условно сможет отдавать в нагрузку 30-35 ампер-часов энергии. Много это или мало? Обычная лампа освещения мощностью 60 ватт потребует, с учетом наличия инвертора, преобразующего 12 В постоянного тока в 220 В переменного и имеющего собственный КПД в пределах 70%, тока в 7 ампер — это чуть больше четырех часов работы. Восстанавливать же растраченную энергию наш ветряк с условной мощностью 90 ватт даже в лучшем случае, при постоянном сильном ветре, будет не менее пяти часов. Как вы видите, при использовании ветрогенератора исключительно как автономного источника энергии электричество в вашем доме будет доступным лишь на несколько часов в день.

Вторым узлом системы электроснабжения становится инвертор. В нашем случае можно использовать как готовый автомобильный, так и извлеченный из источника бесперебойного питания. В любом случае важно не перегружать его потреблением тока, учитывая, что реальная эксплуатационная мощность его в 1,2-1,5 раза меньше указываемой максимальной мощности.

Как вы можете видеть, привлекательность использования даровой энергии упирается во многочисленные ограничения, и даже единственный эффективный в средней полосе России вариант — ветрогенератор — неспособен обеспечивать длительную автономность.

Но вместе с тем эта идея неплоха и как источник аварийного электропитания и, особенно, как конструкторская задача — удовольствие от создания своими руками ветрогенераторной установки может в разы превосходить ее мощность.

Источник



Автономный блок питания на базе ветрогенератора

Есть множество случаев, когда проживая за городом, Вам может понадобиться небольшое количество электроэнергии для питания маломощного устройства. Например, для работы компактной метеостанции, контроля уровня воды в баке, управления автоматикой теплицы, для дежурного освещения садовой дорожки или небольшого помещения и других устройств. Для каждого из них необходимо иметь источник питания — батарею, аккумулятор или сетевой блок питания (БП). В случае периодической нагрузки устройства, целесообразно использовать БП на базе аккумулятора. Причем для его зарядки, используя устройства в этих условиях, наиболее выгодно использовать возобновляемую энергию ветра, что сделает БП экономичным и автономным.

В нашем случае, рассмотрим вариант использования энергии ветра, для дежурного освещения садового туалета, отдельно стоящего на краю участка. Так как яркое освещение на этом объекте не нужно, то для решения этой задачи достаточно малых мощностей. В течение суток аккумулятор заряжается от энергии ветра, а в темное время суток отдает ее по мере необходимости.

Для изготовления БП потребуется ветрогенератор мощностью в несколько ватт, аккумулятор небольшой емкости и зарядное устройство для него, устройство согласования напряжений.

Ветрогенератор
В качестве электрогенератора используется доработанный компактный автомобильный стартер на постоянных магнитах. Выходные данные генератора: переменный ток мощностью 1,0…6,5 вт (в зависимости от скорости ветра). Напряжение – 1…6 в; ток – 0,2…1,1 а (в диапазоне: малая — средняя скорость ветра).

Автономный блок питания на базе ветрогенератора

Аккумулятор и зарядное устройство.
В качестве накопителя энергии применим литий-ионный аккумулятор от мобильного телефона. Схема и порядок изготовления зарядного устройства (ЗУ) для этого аккумулятора представлены в статье.

Входные данные зарядного устройства: постоянный ток напряжением 5,5…30 В. Выходное напряжение предлагаемого зарядного устройства в пределах 4,18 – 4,20 В. При использовании другого аккумулятора, при соответствующей регулировке, ЗУ позволяет получить выходное напряжение в пределах 2,5…27 В.

Согласование напряжений
Напряжение и ток от ветровой турбины изменяются в зависимости от скорости ветра, поэтому для практического использования, мы должны быть в состоянии зарядить аккумулятор и сохранить там энергию для использования. Для этого, электроэнергия от ветрогенератора должны быть преобразована из переменного тока в постоянный, с напряжением достаточным для работы зарядного устройства аккумулятора.

Предложенный ветрогенератор, как видим по выходным характеристикам, не способен выдавать необходимое напряжение по причине низкой частоты вращения. При средней скорости ветра, на выходе удается получить напряжение порядка 2…5 В, а для заряда аккумулятора требуется напряжение более 5,5 вольт. Выход из положения — применение простого преобразователя напряжения, собранного на основе четырехкратного умножителя напряжения. Подавая на вход преобразователя 2…5 В переменного тока, на выходе получим 5,5…12 В постоянного тока, что вполне достаточно для заряда аккумулятора. Один из вариантов четырехкратного умножителя напряжения, использованный в предлагаемом устройстве, показан на схеме.

Этот вариант умножителя имеет симметричную схему и хорошую нагрузочную способность, выполнен из дешевых и доступных элементов. Использование умножителя, вместо повышающего трансформатора, позволяет уменьшить габариты и вес устройства, исключить выпрямитель напряжения.

В итоге, схема автономного блока питания принимает следующий вид.

Схема состоит из 4-х блоков:
А1 – ветрогенератор;
А2 — умножитель напряжения;
А3 – аккумулятор и зарядное устройство;
А4 – блок освещения.

Изготовление автономного блока питания

1. Умножитель напряжения (блок А2), по приведенной выше схеме, собираем и распаиваем на плате размером 65 х 35 мм, вырезанной из универсальной монтажной текстолитовой платы.

Читайте также:  Как подобрать аккумулятор для шуруповерта макита

Для монтажа схемы использованы нереализованные ранее отечественные диоды Д226Г, имеющие эффективный теплоотвод. Электролитические конденсаторы импортные. При необходимости, возможно собрать эту схему более компактно, используя современные импортные диоды с минимально возможным прямым напряжением, для повышения эффективности преобразователя напряжения.

Необходимо учесть, что при работе устройства, максимальный ток протекающий через диоды будет равен удвоенному току нагрузки, а на электролитах развивается удвоенное амплитудное значение входного напряжения. Соответственно конденсаторы и диоды должны быть рассчитаны на эти параметры.

Дополнительно, в блок умножителя напряжения, добавлен резистор R6 для ограничения максимального тока и стабилитрон D5 для ограничения напряжения. Эти элементы должны работать для защиты устройства при сильных ветрах. Для сглаживания пульсаций, на выходе умножителя напряжения, подключен электролит С5 (на схеме перенесен в блок А3).

2. Аккумулятор и зарядное устройство (А3). В качестве накопителя энергии применим литий-ионный аккумулятор от мобильного телефона. Схема и порядок изготовления зарядного устройства для этого аккумулятора представлены в статье.

Настройка зарядного тока схемы. Подключив к схеме разряженный аккумулятор (о чем сообщит включившийся светодиод), резистором R2 устанавливаем по тестеру величину зарядного тока – 100…150 мА.

3. Блок освещения (А4) включает в себя цепь, состоящую из трех последовательно включенных сверхярких светодиодов, ограничительного резистора R5 и выключателя питания светодиодов. Светодиоды с ограничительным резистором смонтированы на отдельной плате.

4. Изготовим плату для установки литий-ионного аккумулятора. Вырезаем из универсальной монтажной текстолитовой платы прямоугольник размером 40 х 55мм, прорезаем в плате два паза шириной 0,7…1,0мм для установки контактов. Расположение контактов зависит от модели используемого литий-ионного аккумулятора. Из медной или латунной пластины толщиной 0,5…0,7мм вырезаем Г-образные контакты и крепим их на обратной стороне платы с помощью пайки или другого соединения. Припаиваем контакты к соответствующим выходным выводам зарядного устройства и блоку освещения. На плате данного устройства выполнены две группы контактов разной высоты для параллельного подключения двух аккумуляторов (для увеличения емкости), установленных друг над другом.

5. Сборка блока питания. Собираем изготовленные блоки по приведенной выше схеме, с помощью монтажного провода. В качестве корпуса возможно использовать подходящую по размерам коробку, светильник. Желательно в пыле и влагозащищенном исполнении (работа на открытом воздухе). В данном случае использован пластмассовый корпус от старого фонарика.

6. Проверяем работу устройства.
На вход устройства подаем переменный ток напряжением 2,3 В.

Убеждаемся в правильной работе изготовленного устройства.

7. Устанавливаем собранные блоки в корпус. Индикатор заряда аккумулятора закрепляем на видном месте. Из корпуса выходит провод (контактная группа) для присоединения к генератору и включателю освещения.

8. По возможности, герметизируем зазоры от попадания пыли и влаги.

Источник

Аккумуляторы для ветрогенератора и солнечных батарей

Почему необходимы аккумуляторы для ветрогенератора и солнечных батарей

Часто задают вопрос: «Может ли солнечная электростанция или бытовой ветрогенератор работать без аккумуляторов?» В принципе конечно может. Только для этого необходимо соответствующее оборудование, способное обеспечить как безопасную работу ветряка, так и возможность подачи электроэнергии электроприборам. То есть нужны специальные контроллер и сетевой инвертор.

Но, с одной стороны, это оборудование редко, специфично и дорого. А, с другой, — если нет возможности продать поступающую от ВИЭ электроэнергию в сеть в тот момент, когда самому хозяину она не нужна, то она попросту теряется. Чтобы этого избежать систему солнечных батарей и ветрогенератора дополняют аккумуляторные батареи.

Какие аккумуляторы для солнечных панелей и ветрогенератора применяют

Для автономных электростанций и домовых источников бесперебойного электропитания применяют, чаще всего, аккумуляторы «автомобильного» масштаба. Аккумуляторную батарею составляют обычно из нескольких аккумуляторов ёмкостью 100-200 А/ч.

Господствующее положение здесь занимают кислотные аккумуляторы. Иные виды АКБ ныне не могут конкурировать с ними по цене и полезному действию.

Могут использоваться различные кислотные аккумуляторы: стартерный для автомобиля, гелевые или AGM, специальные аккумуляторы имеющие большое число циклов заряд-разряд.

Стартерные аккумы наиболее доступны по цене. Они продаются в любом автомагазине. Однако они не готовы к большому количеству циклов заряд-разряд. При разряде на 80% количество циклов составляет обычно от 100 до 200.

Аккумуляторы типа AGM – это аналогичные аккумуляторы, но изготовленные по особой технике. Электролит там впитывают стекломаты. Расситаны они ориентировочно на 250 тире 400 циклов.

Батареи типа GEL (гелевые) – также кислотные и герметичные, но в них электролит сгущён специальным гелем. Они рассчитаны на 350 и больше циклов. Эти аккумуляторы идут для солнечных панелей и ветрогенераторов чаще всего. Но и стоят они существенно дороже стартерных.

Специальные панцирные накопители – это аккумы изготовленные особым способом, позволяющим в разы улучшить их возможности. Электроды таких АКБ напоминают трубки. Изготавливаются электроды из сплавов химически чистых свинца и сурьмы. Что значительно удлиняет срок их службы. Такие АКБ выдерживают от 900 — 1500 циклов заряд-разряд на 80%.

Не так давно на рынке стали появляться новые подобные гелевым, но существенно улучшенные аккумуляторы, серии CARBON. Их ещё называют карбоновыми. За счёт изготовления пластин из свинца высокой очистки и укрепления их частицами углерода удалось достичь впечатляющих результатов. В первую очередь это касается увеличения цикличности заряд-разряд. Причём за истекший год этот показатель ещё улучшился за счёт карбонизации не только отрицательной, но и положительной пластин. Если прежние батареи марки KORD давали 2500 циклов при 80-процентном разряде, то нынешние VEKTOR уже — 3760 циклов при 70% разряде. Таким образом, цикличность, а следовательно и срок службы карбоновых аккумуляторов по сравнению с гелевыми увеличился в 6 раз.

На диаграмме ниже показано соотношение роста долговечности и стоимости карбоновых батарей в отношении к традиционным гелевым.

Источник

Как сделать ветрогенератор своими руками

Ветер – это бесплатная энергия! Так давайте же её использовать в личных целях. Если создание ВЭС в промышленных масштабах это очень дорого, потому что кроме генератора нужно провести ряд исследований и расчётов, государство не берет на себя такие расходы, а инвесторам в странах бывшего СССР – это, почему-то не вызывает особого интереса. То в частном порядке можно сделать мини-ветряк для собственных нужд. Стоит понимать, что проект перевода вашего дома на альтернативную энергию очень дорогое занятие.

Как уже было сказано: нужно произвести длительные наблюдения и расчёты, чтобы подобрать оптимальное соотношение размеров ветряного колеса и генератора, подходящее к вашему климату, розе ветров и среднегодовой скорости ветра.

Среднегодовая сколость ветра

Эффективность ветроэлектрической установки в пределах одного региона может отличаться в разы, это связано с тем, что движение ветра зависит не только от климатического пояса, но и от рельефа местности.

Устройство ветрогенератора

Однако вы можете узнать, что такое ветроэнергетика с минимальными затратами собрав бюджетную установку для питания маломощной нагрузки, типа смартфона, лампочек или радиоприёмника. При должном подходе вы можете обеспечить электроэнергией небольшой дом или дачный участок.

Самодельный ветрогенератор

Давайте рассмотрим каким образом можно сделать простейшую ветроэлектрическую установку своими руками.

Содержание статьи

Маломощные ветряки из подручных средств

Компьютерный кулер представляет собой бесколлектроный двигатель, который в своем первоначальном виде не представляет практической ценности.

Изготовление маломощного ветряка

Его нужно перемотать, так как в оригинале обмотки соединены неподходящим образом. Мотать катушки поочередно:

По часовой стрелке;

Против часовой стрелки;

По часовой стрелке;

Против часовой стрелки.

Обмотки

Соединять соседние катушки нужно последовательно, а еще лучше мотать одним куском провода переходя от одного паза к другому. Толщину провода в этом случае подбирать произвольно, лучше будет если вы намотаете как можно больше витков, а это возможно при использовании наименее тонким проводом.

Выходное напряжение с такого генератора будет переменным, а его величина будет зависеть от оборотов (скорости ветра), установите диодный мост из диодов Шоттки, чтобы выпрямить его до постоянного, обычные диоды подойдут, но будет хуже, т.к. на них упадёт напряжение от 1 до 2-х вольт.

Лирическое отступление, немного теории

Запомните величина ЭДС равняется:

где L – длина проводника помещенного в магнитное поле; V – скорость вращения магнитного поля;

При модернизации генератора вы можете влиять только на длину проводника, то есть на количество витков каждой из катушек. Количество витков – определяет выходное напряжение, а толщина провода – максимальную токовую нагрузку.

На практике влиять на скорость ветра нельзя. Однако из этой ситуации тоже есть выход, можно, узнав типовую скорость ветра для вашей местности спроектировать подходящий по оборотам винт для ветроэлектрической установки, а также редуктор или ременную передачу, для обеспечения достаточных оборотов для генерации нужного по величине напряжения.

ВАЖНО: Быстрее не значит лучше. При слишком большой скорости вращения ветрогенератора сократиться его ресурс, ухудшаться смазочные свойства втулок или подшипников ротора, и он заклинит, а быстрее всего произойдет пробой изоляции обмоток в генераторе.

Генератор состоит из:

Устройство самодельного ветрогенератора

Промышленные конструкции ветрогенераторов:

Увеличиваем мощность генератора из компьютерного кулера

Читайте также:  Аккумулятор for canon s90

Во-первых, чем больше лопастей и диаметр колеса – тем лучше, поэтому присмотритесь к 120-мм кулерам.

Во-вторых, мы уже сказали, что напряжение зависит и от магнитного поля, дело в том, что промышленные генераторы высокой мощности имеют обмотки возбуждения, а низкой мощности – сильные магниты. В кулере магниты крайне слабые и не позволяют добиться хороших результатов от генератора, да и зазор между ротором и статором весьма велик – порядка 1 мм, и это при и без того слабых магнитах.

Кулер

Решение этой проблемы кардинально изменить конструкцию генератора. Вернее, от кулера потребуется только крыльчатка, в качестве самого генератора применим моторчик от принтера или любой другой бытовой техники. Наиболее часто встречаются щеточные двигатели с возбуждением от постоянных магнитов.

В результате это будет выглядеть так.

Крыльчатка для ветрогенератора

Мощности подобного генератора хватит, чтобы запитать светодиоды, радиоприемник. Для подзарядки телефона его не хватит, телефон будет отображать процесс заряда, но ток будет крайне мал, до 100 Ампер, при ветре 5-10 метров в секунду.

Шаговые двигатели в роли ветрогенератора

Шаговый двигатель очень часто встречается в компьютерной и бытовой технике, в различных проигрывателях, флоппи-дисководах (интересны старые модели 5.25”), принтерах (особенно матричных), сканерах и т.д.

Данные двигатели без переделок могут работать в роли генератора, они представляют собой ротор с постоянными магнитами, и статор с обмотками, типовая схема подключения шагового двигателя в режиме генератора изображена на рисунке.

Шаговый двигатель

В схеме установлен линейный стабилизатор на 5 Вольт, типа L7805, что позволит без опасения подключать мобильные телефоны к такому ветряку для их зарядки.

Шаговый двигатель

На фото генератор из шагового двигателя с установленными лопастями.

Двигатель в конкретном случае с 4-мя выходными проводами, схема соответственно под него. Двигатель с такими габаритами в режиме генератора выдаёт примерно 2 Вт при слабом ветре (скорость ветра около 3 м/с) и 5 м/с при сильном (до 10 м/с).

Кстати вот аналогичная схема со стабилитроном, вместо L7805. Позволяет заряжать Li-ion батареи.

Схема со стабилитроном

Доработка самодельного ветряка

Чтобы генератор работал эффективнее нужно сделать ему направляющий хвостовик и закрепить его на мачте подвижно. Тогда при изменении направления ветра – будет изменяться направление ветрогенератора. Тогда возникает следующая проблема – кабель, идущий от генератора к потребителю будет закручиваться вокруг мачты. Чтобы это решить нужно обеспечить подвижный контакт. На Ebay и Aliexpress продаётся готовое решение.

Кабель

Нижних три провода – неподвижны идут вниз, а верхний пучок проводов – подвижен, внутри установлен скользящий контакт или щеточный механизм. Если у вас нет возможности купить, проявите смекалку, и, вдохновившись решением конструкторов автомобиля Жигули, а именно реализацией подвижного контакта кнопки сигнала на руле и сделайте что-то похожее. Или воспользуйтесь контактной площадкой от электрочайника.

Контактная площадка от электрочайника

Соединив разъёмы, вы получите подвижный контакт.

Мощный ветрогенератор из подручных средств.

Для получения большей мощности вы можете использовать два варианта:

1. Генератор из шуруповерта (10-50 Вт);

2. Ветрогенератор из автомобильного генератора.

Из шуруповерта понадобиться только моторчик, вариант аналогичен предыдущему, в качестве винта вы можете использовать лопасти от вентилятора, это увеличит итоговую мощность вашей установки.

Вот пример реализации такого проекта:

Самодельный ветряк

Обратите внимание как здесь реализована шестеренчатая повышающая передача – вал ветрогенератора расположен в трубе, на его конце расположена шестерня, которая передаёт вращение меньшей шестерне закрепленной на валу двигателя. Повышение оборотов двигателя имеет место и в промышленных ветряных электроустановках. Редуктора применяются повсеместно.

Как работает ветряная турбина

Однако в условиях самоделки изготовить редуктор становиться большой проблемой. Вы можете извлечь редуктор из электроинструмента, он там нужен чтобы понизить высокие обороты на валу коллекторного двигателя в нормальные обороты патрона на дрели, или диска болгарки:

В дрели установлен планетарный редуктор;

В болгарке установлен угловой редуктор (станет полезным для монтажа некоторых установок и уменьшит нагрузку с хвоста ВЭУ);

Редуктор от ручной дрели.

Элементы ветряка

Такой вариант самодельного ветрогенератора уже может заряжать 12 В аккумуляторы, однако нужен преобразователь для формирования зарядного тока и напряжения. Эту задачу можно упростить применив автомобильный генератор.

Ветрогенератор из автомобильного генератора

Автомобильный генератор состоит из статора с трёхфазной обмоткой, и ротора со щёточным узлом и катушкой возбуждения. К нагрузке такой генератор подключается через диодный мост собранный по схеме Ларионова, он обычно расположен на задней крышке генератора.

Ветрогенератор из автомобильного генератора

Преимущество такого генератора – возможность использовать его для зарядки автомобильных аккумуляторов, в принципе он для этого и предназначен. Автогенераторы имеют встроенное реле-регулятор напряжения, что избавляет от необходимости покупать дополнительные стабилизаторы или преобразователи.

Однако автолюбители знают, что на низких холостых оборотах, примерно 500-1000 Об/мин мощность такого генератора мала, и он не обеспечивает должного тока для заряда аккумулятора. Это приводит к необходимости подключения к ветроколесу через редуктор или ременную передачу.

Отрегулировать количество оборотов при нормальной для ваших широт скорости ветра можно с помощью подбора передаточного числа либо с помощью правильно спроектированного ветроколеса.

Полезные советы

Мачта ветряка

Пожалуй, самая удобная для повторения конструкция мачты для ветряка – изображена на картинке. Такая мачта растягивается на тросах, закрепленных на держателях в земле, что обеспечивает устойчивость.

Конструкция мачты для ветряка

Важно: Высота мачты должна быть как можно большей примерно 10 метров. На большей высоте ветер сильнее, потому что для него нет препятствий в виде наземных сооружений, холмов и деревьев. Ни в коем случае не устанавливайте ветрогенератор на крыше своего дома. Резонансные колебания крепежных конструкций могут вызвать разрушение его стен.

Позаботьтесь о надёжности несущей мачты, ведь конструкция ветряка на базе такого генератора значительно утяжеляется и представляет собой уже довольно серьезное решение, которое может осуществлять автономное электроснабжение дачи с минимальным набором электрических приборов. Устройства, которые работают от 220 Вольт можно запитать от инвертора 12-220 В. Самый распространённый вариант такого инвертора – блок бесперебойного питания для ПК.

Блок бесперебойного питания для ПК

Лучше использовать генераторы от дизельных, в т.ч. грузовых автомобилей, ведь они рассчитаны для работы на низких оборотах. В среднем дизельный двигатель крупного грузовика работает в диапазоне оборотов от 300 до 3500 об/мин.

Современные генераторы выдают 12 или 24 Вольт, а ток в 100 Ампер – уже давно стал нормальным. Проведя несложные вычисления можно определить, что такой генератор максимально выдаст вам до 1 кВт мощности, а генератор от жигулей (12 В 40-60 А) 350-500 Вт, что уже довольно приличная цифра.

Каким должно быть ветроколесо для самодельной ВЭУ?

Я упомянул в тексте о том, что ветроколесо должно быть большим и с большим количеством лопастей, на самом деле это не так. Это утверждение было справедливо для тех микро-генераторов, которые не претендуют на звание серьезных электрических машин, а скорее экземпляры для ознакомления и досуга.

На самом деле проектирование, расчёт и создание ветроколеса – это очень сложная задача. Энергия ветра будет использоваться рациональнее, если оно выполнено очень точно и идеально выведен «авиационный» профиль, при этом он должен быть установлен с минимальным углом к плоскости вращения колеса.

Реальная мощность ветроколес с одинаковым диаметром и разным количеством лопастей – одинаково, разница лишь в скорости их вращения. Чем меньше крыльев – тем больше оборотов в минуту, при том же ветре и диаметре. Если вы собираетесь добиться максимальных оборотов вы должны максимально точно смонтировать крылья с минимальным углом к плоскости их вращения.

Самодельный ветрогенератор

Ознакомьтесь с таблицей из книги 1956 года «Самодельная ветроэлектростанция» изд. ДОСААФ Москва. На ней показана связь диаметра колеса, мощности и оборотов.

Диаметр ветроколеса (м) 1,6 2,0 2,5 3,0 4,0 5,0
Число оборотов в минуту (при ветре 7 — 8 м/с) 670 450 360 300 225 180
Мощность (при ветре 7—8 м/сек) (ватт) 65 — 80 100 — 130 200 300 500 1000

В домашних условиях эти теоретические выкладки дают мало толку, любители делают ветроколеса из подручных средств, в ход идёт:

Пластиковые канализационные трубы.

Собрать своими руками быстроходное 2-4 лопастное ветроколесо можно из канализационных труб, кроме них нужна ножовка или любой другой режущий инструмент. Использование этих труб обусловлено их формой, после обрезки они имеют вогнутую форму, что обеспечивает высокую отзывчивость к потокам воздуха.

Изготовление ветряного колеса

После обрезки их закрепляют с помощью БОЛТОВ на металлической, текстолитовой или фанерной болванке. Если вы собрались делать её из фанеры – лучше переклейте и скрутите саморезами с обеих сторон несколько слоев фанеры, тогда у вас получится добиться жесткости.

Ветряное колесо для ветрогенератора

Вот идея двух лопастной цельной крыльчатки для генератора из шагового двигателя.

Ветроколесо

Выводы

Вы можете сделать ветроэлектрическую установку начиная от малых мощностей – единиц Ватт, для питания отдельных светодиодных светильников, маячков и мелкой техники, до хороших значений мощности в единицах киловатт, накапливать энергию в аккумуляторе, использовать её в исходном виде или преобразовывать до 220 Вольт. Стоимость такого проекта будет зависеть от ваших потребностей, пожалуй, самым дороги элементом является мачта и аккумуляторы, может оказаться в пределах 300-500 долларов.

Источник