Меню

Аккумулятор сделанный своими руками

Аккумулятор сделанный своими руками

Конечно, сейчас нет проблем с покупкой батареек и аккумуляторов, но, видимо, Вам будет интересно познакомиться

с конструкцией газового аккумулятора. Рассмотрим конструкцию самого простого аккумулятора. Конструкция

аккумулятора настолько проста, что ее сможет повторить любой человек.( что не мало важно, и уже обговаривалось в комментариях..)

1.емкость 5.15% раствор поваренной соли

2.крышка 6.мешочек с активированным углем

3.угольный стержень 7.клемма (хомутик)

4.активированный уголь 8.пробка

Конструкция аккумулятора понятна из рисунка. Непрозрачная емкость 1 с крышкой 2 наполнена электролитом — 15%

раствором поваренной соли. В емкость опущены два одинаковых электрода. Электрод состоит из угольного стержня,

вокруг которого располагается мешочек 6 с активированным углем 4. Мешочки необходимо плотно обмотать

нитками, чтобы обеспечить хороший контакт электрода с активированным углем. Толщина слоя активированного угля

не должна превышать 15мм.

Аккумулятор. Простой самодельный аккумулятор.

Если добавить в раствор на каждый литр 1г борной кислоты и 2г сахара, то улучшится работа аккумулятора.

Сахар добавляют при длительных циклах разряда. Заряжают аккумулятор постоянным током из расчета 4,5 вольта

на каждый элемент (банку). Время заряда до 12 часов. Сигнал полного заряда — обильное выделение газов. Для

того чтобы газы не «выдавливали» из емкости электролит, предусмотрена пробка, которую нужно при зарядке

открыть. Чтобы получить емкость 1а*ч, нужно использовать 65г активированного угля. Смена электролита один раз в

1. Если стенки сосуда будут пропускать свет, то аккумулятор будет быстро разряжаться. Емкость снаружи можно

2. Воду лучше применять дистиллированную или растопить снег, так как водопроводная сильно минерализована, а

3. 15% раствор поваренной соли получается разведением 5 столовых ложек соли в одном литре воды.

ну и вот еще:
Самодельная батарейка
Если нет под рукой комплекта свежих батареек, можно сделать самодельный источник питания. Для этого Вам потребуются два угольных стержня от старой батарейки, два тканных мешочка диаметров 20. 25 мм и высотой 60 мм. В них устанавливаются стержни и наполняются активированным углем (дробленые медицинские таблетки).

В качестве электролита используется следующий раствор: в 1 л воды растворите 5 столовых ложек поваренной соли, 2 г борной кислоты и 3 г сахара.

Стенки стеклянной банки нужно покрасить черной краской.
Источник питания будет выдавать напряжение 1,5 В.

Источник



Как сделать аккумулятор

Всегда можно получить постоянное напряжение для питания небольших электронных устройств, если знать, как сделать аккумулятор своими руками. Аккумуляторы отличаются от батареек обратимостью своих химических реакций. Это значит, что они не только вырабатывают электрический ток и со временем разряжаются, а также обладают способностью восстанавливаться. Для этого нужно выполнить заряд, пропуская через аккумулятор ток от внешнего источника.

Аккумулятор – химический источник постоянного тока

Как сделать аккумулятор своими руками

Химический источник тока (двухполюсник), способный после разряда восстанавливаться, можно выполнить своими руками. Любой химический источник тока, имеющий периодический режим работы (разряд – заряд), состоит из следующих основных элементов:

  • электроды: анод и катод;
  • электролит;
  • разделительные пластины (сепараторы);
  • корпус;
  • контактные клеммы (выводы).

В качестве анода и катода используются различные пары химических элементов. Анод имеет отрицательный заряд – восстановитель, катод положительный заряд – окислитель.

Оба электрода погружены в электролит. Это водные растворы солей и кислот, проводящие электричество. Когда происходит разряд аккумулятора (двухполюсника) на нагрузку, анод окисляется и вырабатывает электроны, которые через электролит движутся к катоду. На катоде происходит процесс восстановления окислителя.

Важно! При работе на нагрузку ток через двухполюсник течёт от минуса к плюсу, при зарядке от постороннего источника тока (ИТ) – от плюса к минусу.

Для создания одной банки простейшего аккумулятора из меди и цинка понадобятся следующие детали:

  • медная проволока длиной 100 мм;
  • оцинкованная пластина размерами 25 * 50 мм;
  • прокладка – вырезанная из москитной полиэтиленовой сетки полоска;
  • электролит – соляной раствор;
  • корпус из непрозрачного материала – герметичный стаканчик из-под кофе с крышкой.

Необходимо, чтобы ёмкость для аккумулятора была непрозрачной.

Сборка элемента производится в следующей последовательности:

  • медная проволока скручивается спиралью, для увеличения площади рабочей поверхности к верхнему концу припаивается отвод;
  • оцинкованная пластина также скручивается по окружности, к верхней части пластины припаивается отвод;
  • в крышке баночки делается два отверстия для выводов: в центре – для медной проволоки и ближе к краю – для вывода цинкового электрода;
  • медную спираль располагают по центру, вокруг неё размещают цинковую трубку, между ними вставляют изолирующую прокладку;
  • заливают электролит: солёную воду (1л воды на 5 ст. л. соли) или уксус 15%;
  • неплотно прикрывают крышку, предварительно продев в неё выводы.

К полученной банке подключают источник тока для зарядки самодельного аккумулятора. При этом нельзя плотно закрывать крышку. Или для выхода газов при заряде в ней проделывается множество мелких отверстий (кроме отверстий для выводов). У самодельного элемента плюс – на медном электроде, минус – на цинковом.

Внимание! Чем меньше расстояние между элементами меди и цинка, и чем больше площадь поверхности электродов, тем большее напряжение выдаст подобная аккумуляторная ячейка.

В идеале такой элемент вырабатывает 0,7 вольта. Недостаток такой АКБ заключается в высоком внутреннем сопротивлении и быстром саморазряде.

Как сделать мощный аккумулятор своими руками

Для того чтобы самодельный аккумулятор выдавал на выходе более 3,6 В постоянного тока, нужно собирать самодельные банки в последовательно соединённую батарею. Можно единичные элементы помещать в общий корпус.

Медно-цинковая самодельная батарея

Качественные системы зарядки Li-ion 18650

Литий-ионные источники электричества этого типа широко эксплуатируются с различными устройствами. Для их продолжительной работы необходима постоянная подзарядка. При заряде напряжение на элементе достигает значения 4,2 В, после чего снижается до 2-3 В. При глубоких разрядах (ниже 3 В) срок службы Li-ion 18650 значительно сокращается.

Система для зарядки Li-ion 18650

Важно! На долговечность влияет количество циклов «заряд-разряд». Это оптимальное число циклов, при которых ёмкость батареи при первом заряде (номинальная), отличается от текущей ёмкости после заряда не более, чем на 20%. Нормальным считается показатель – 350-500 циклов «заряд-разряд».

Существуют специальные зарядные устройства для подобных аккумуляторов, но их можно сделать самостоятельно, используя схему.

Схема самодельной зарядки для Li-ion 18650

Регулировка тока осуществляется подбором резистора R4 на первоначальное значение тока зарядки. Он зависит от емкости аккумулятора. Например, если ёмкость батареи 3000 мА/ч, то ток зарядки равен 2-3 А.

Читайте также:  Аккумулятор для телефона micromax q415

Заводские системы контроля заряда самостоятельно делают регулировку этого параметра в рамках всего времени заряда.

Самодельная батарейка из подручных средств

Как можно сделать аккумуляторы, используя электролит и электроды, рассмотрено выше. Теперь о том, как быстро собрать источник тока однократного действия. Батарейка – это гальванический источник электричества, который не имеет способности восстанавливаться.

Способ первый: батарейка из лимона

Мякоть лимона содержит лимонную кислоту, она послужит электролитом. В качестве электрода выступают оцинкованный гвоздик и отрезок медной проволоки. Они втыкаются в лимон на расстоянии 50-100 мм друг от друга. Реакция окисления запускает движение электрического тока.

Батарейка из лимона

Способ второй: банка с электролитом

Литровую стеклянную банку используют в качестве ёмкости. В качестве электродов берутся цинковая и медная пластины. К пластинам прикрепляются провода, сами они опускаются в банку с электролитом. Им служит 20% раствор серной кислоты. Также можно использовать хлористый аммоний (нашатырь). На 100 мл воды берут 50 г. порошка. Уровень электролита не достигает края банки на 15-20 мм.

Ёмкость с электролитом

Осторожно! Работа с серной кислотой при приготовлении электролита подразумевает добавление воды в кислоту, а не наоборот. При приготовлении раствора необходимо использовать стеклянную посуду и стеклянную или деревянную палочку для перемешивания.

Способ третий: медные монеты

Принцип использования медного катода и алюминиевого анода рассмотрен в этом способе. Процесс изготовления источника тока следующий:

  • по форме медных монет одного размера (медный пятак) вырезают кружочки из алюминиевой фольги и плотного картона (обложка старой книги);
  • монеты очищаются путём погружения в уксус, им же пропитываются и кружочки картона;
  • картон вставляется между монетой и кружком фольги, которые служат катодом и анодом.

Собранная таким образом батарея будет работать до тех пор, пока не высохнет электролит, пропитавший картонные кружки.

Батарейка из монет и алюминиевой фольги

Способ четвертый: батарейка в пивной банке

Сам корпус пивной банки (алюминиевый) служит анодом (минус), в качестве катода используют графит. При изготовлении выполняются следующие шаги:

  • удаляется верхняя часть банки;
  • пенопластовый кружок диаметром, равным внутреннему диаметру банки, и толщиной не менее 10 мм укладывается на дно банки;
  • в его центр вставляется графитовый стержень подходящего диаметра;
  • свободное пространство между ним и стенками банки заполняется угольной крошкой;
  • соляным раствором (5 ст. л. соли на 0,5 л воды) заполняется полученный элемент;
  • верхняя часть устройства заливается расплавленным парафином или стеарином (от свечи);
  • к стержню и корпусу банки с помощью зажимов «крокодил» присоединяются провода.

Батарейка в пивной банке

Способ пятый: батарейка из картошки

Это вариант использования химической реакции окисления между медными и оцинкованными полосками, в качестве электролита используется мякоть картофеля.

Внимание! Полученные напряжения таких источников настолько малы, что подобные конструкции могут служить лишь в качестве опытов для изучения происхождения электричества.

Батарейка из картошки

Способ шестой: графитовый стержень

Графитовый сердечник обматывается пористой фибровой салфеткой. Поверх него наматывается по спирали алюминиевая проволока. Вся конструкция опускается в подходящий по размеру стакан, заполненный «Белизной». Водный раствор хлорки служит электролитом.

Графитовый стержень как электрод батарейки

Несмотря на всё разнообразие способов и видов самодельных источников тока, все они работают, благодаря электролитическим процессам и химическим реакциям окисления. Правильно подобранные пары элементов для анода и катода, а также использование подходящего электролитического раствора дают реальные результаты. Можно сделать аккумулятор своими руками для питания гаджетов и малогабаритных устройств.

Видео

Источник

Как сделать аккумулятор из готовых элементов

Столкнулся я тут с проблемой, что нужно было подобрать аккумуляторную батарею для мощного светодиодного фонарика.

Предыдущая готовая аккумуляторная батарея с оранжево-желтого ресурса быстро погибла, причем проработала она совсем немного.

Покупать новую батарею у наших продавцов было просто разорением. Можно было бы отдать денежку за услугу сборки (читай как «купить собранную батарею»), но сколько я не искал готовую собранную батарею –то нужных характеристик нет, то используют самые дешевые и поганые элементы, которые дохнут за пару месяцев (а берут за них наши умельцы как за оригинальные элементы от Samsung).

Все мысли пришли к тому, что нужно сделать батарею самому. Благо навыки для этого есть.

Если вы уже собирали батарею самостоятельно, то смело закрывайте эту статью 🙂…Ничего нового вы тут уже не найдете. Но если делаете аккумулятор первый раз в жизни, то читайте дальше, информация обязательно пригодится.

Речь пойдет про Li-ion аккумуляторы. Правда используемая логика подойдет и при сборке батарей любой химии.

Как устроено большинство аккумуляторных батарей?

Все они состоят из элементов, которые объединены в ячейки, а ячейки собраны в готовую аккумуляторную систему.

Ячейка – это несколько параллельно соединенных элементов.

Для того, чтобы получить требуемые характеристики, нужно поиграть со смешанным соединением проводников (использовать параллельные и последовательные соединения) с целью получить нужные значения.

Элементы в данном случае (в случае li-ion аккумулятора) – это банки 18650. Каждая банка обладает характеристиками.

Она имеет ёмкость, допустимый ток разряда и вольтаж. Ёмкость и вольтаж элемента всегда указаны на самой банке (элементе). Но вот допустимые разрядные токи обычно не указаны и зависят от типа элемента. Обычно если изделие не совсем «паленое», эта информация есть в подробных характеристиках.

Если вы работаете с Li-ion аккумулятором, то допустимый разрядный ток – это два значения ёмкости элемента.

Лучше выдерживать примерно 1,7 от значения емкости. Например, если емкость одной банки составляет 1700 мАч, то разряжать её можно примерно на 2,9 А. Важно, чтобы именно такие разрядные токи приходились на один элемент. Правда существуют и элементы с высокими токами разряда, но это отдельная песня.

Параметр этот зависит от химии аккумулятора и если бы вы использовали кислотно-свинцовый аккумулятор, то там эти цифры значительно выше. У литий-железофосфатных тоже другое значение. Но вернемся к нашим баранам.

Вы уже узнали, что одна банка вашего аккумулятора имеет емкость пусть 1700 мАч и способна выдавать 3,7 В. Нужно понять, как объединить эти элементы в систему и сколько нужно элементов.

Количество элементов определяется исходя из необходимой мощности батареи и допустимых разрядных токов на один элемент.

Давайте разберем всё это на простом примере.

Предположим, что есть у нас некоторый мнимый потребитель, мощность которого составляет 100 Вт, а для работы ему нужно 24 Вольта. Эти характеристики обычно указаны на корпусе самого объекта, который нужно запитать.

Читайте также:  Признаки того что аккумулятор нужно менять

Вспомним, что такое параллельное и последовательное соединения проводников. (Если забыли, то был у меня урок на этот счёт)

При параллельном соединении U = U1 = U2 и I = I1 + I2, а при последовательном всё наоборот.

Ещё нужно помнить формулу расчёта электрической мощности P = U*I.

Известно, что наш потребитель кушает 100 Вт и работает при 24 В.

1. Сила тока, которую нам нужно обеспечить в цепи составляет 100 Вт / 24 В = 4,2 Ампера (I = P/U). Дальше известно, что каждый элемент даёт нам по 3,7 В.

Чтобы выйти на нужные значения по напряжению, мы сначала должны «раскидать» 24 Вольта по элементам.

2. Очевидно, что элементы по 3,7 Вольта нужно соединять последовательно, чтобы выйти на суммарный показатель. Ведь при последовательном соединении напряжения складываются.

Соедини мы их параллельно, общее напряжение батареи составило бы всего 3,7 В. Этого недостаточно.

Сколько нужно раз взять по 3,7 В, чтобы получить 24 Вольта?

Разделим 24 В (рабочее напряжение нашего потребителя из примера, смотрим его на корпусе устройства)/ 3,7 В (напряжение нашего элемента).

Получили 6,5. Округлим до 7.

Итак, нужно соединить 7 элементов по 3,7 В последовательно, чтобы обеспечить вольтаж.

3. Теперь нужно «проверить емкость».

Известно, что каждый элемент может отдавать 1,7 А в течение одного часа.

Значит, в батарее с 7 последовательно соединенными элементами мы имеем силу тока 1,7 А. Ведь элементы соединены последовательно, а значит I=I1=I2.

Наш потребитель кушает 4,2 ампера в час (нашли значение в пункте 1).

Время работы имеющейся аккумуляторной системы сейчас составит 1,7 ампера/ 4,2 ампера = 0,4 часа. Маловато будет. Да и разрядный ток на один элемент сейчас составляет 2,47, что на 0,47 больше, чем две емкости одного элемента. Банки будут сами себя губить.

4. Добавим в нашу сборку дополнительно к каждому последовательно соединенному элементу по одному параллельному элементу.

Образуем бОльшую ячейку.

Что получаем? Напряжение на выходе ячейки постоянное, а вот емкость подрастает. Теперь каждая ячейка отдает вместо 1,7А*ч по 1,7 * 2 = 3,4 А*ч.

Проверим время работы такого аккумулятора с нашим стоваттным потребителем.

3,4 А / 4,2 А = 0,8 часа.

Уже интереснее. Проверим, не убьются ли элементы.

4,2 А разделим на 3,4 А = 1,23 А. Сравниваем с емкостью одного элемента – у нас 1,7 А*ч, а получили 1,23 А.

Замечательно. Элементы проживут долго, так как мы не вышли за границу 2С.

5. Остается подогнать значение под нужное время работы. Делается это также. Добавляем в каждую ячейку параллельную банку. Можно заложить в расчёт хоть 500 часов автономной работы 🙂 Только аккумулятор будет заряжаться 300 лет и весить 500 кг.

После расчёта батареи и приобретения всех нужных элементов, нужно собрать аккумулятор.

На производстве элементы Li-ion аккумулятора соединяются с помощью специальной никелевой ленты. Мы же обойдемся обычным паяльником :)…

Банки аккумулятора можно смело спаивать друг с другом, используя обычные соединительные провода. Очень важно не перегревать элементы при пайке. Для быстрого и качественного их соединения уместно использовать паяльный флюс для алюминия.

Бытует мнение, что паяные аккумуляторы долго не служат. Но на своем опыте могу подтвердить обратное. Главное следить за температурой при пайке и прикасаться к торцам аккумулятора на самое минимальное время.

Сами же банки можно соединить любым удобным способом. Китайцы любят, например, закатывать всё в термоусадку и заливать по уши термоклеем.

Все аккумуляторные батареи из Li-ion элементов имеют контроллер заряда-разряда. Он называется плата BMS (Battery Monitoring System).

Её нужно купить отдельно, ориентируясь на характеристики нашего потребителя и химию аккумуляторов. В характеристиках всегда указан информация о максимальном количестве ячеек, с которыми плата сможет работать, максимальных разрядных токах, предельной мощности и вольтаже системы.

Плата позволит управлять зарядом вашей аккумуляторной системы и контролировать её разряд.

Сажаем её на вход аккумулятора и на каждую ячейку вешаем балансиры (это устройство для равномерного заряда всех ячеек. Выходы на них отмечены на плате. Нужно просто соединить каждую ячейку проводом с платой BMS) .

Ещё бывают платы BMS, интегрированные прямо в элементы аккумулятора. Такие элементы называют защищенными. Если в элементе уже есть плата BMS, то «общая» плата не нужна. Важно, чтобы BMS была в каждом элементе.

Заряжать полученную систему мы будем тем зарядником, который остался у нас от старого аккумулятора. Ну а если батарея новая, то проверьте мощность зарядника и допустимый ток заряда батареи. Напряжение выбираем по напряжению вашей батареи.

Таким образом, мы собрали аккумулятор из отличных элементов и сэкономили деньги. Помимо этого, наш аккумулятор гораздо лучше подходит под конкретные задачи. Надеюсь, статья будет полезна :).

Источник

Как сделать аккумулятор своими руками

Есть множество способов сделать самодельные батарейки. К сожалению, большинство самодельных аккумуляторов либо бесполезны, либо потенциально опасны и сложны в изготовлении. Батареи из лимона и картофеля, как правило, очень слабые и требуют в качестве материала скоропортящегося органического растительного материала, в конструкцию свинцово-кислотных аккумуляторов входят высокотоксичные и едкие химикаты и т.д.

Эта батарея сделана из очень простых и доступных материалов, и обладает достаточной мощностью для работы устройств. Когда традиционные батареи недоступны эта батарея будет отличным аварийным источником электроэнергии. Кроме того, ее можно легко перезарядить практически от любого источника постоянного тока, она очень легкая и, в отличие от более распространенных алюминиево-воздушных батарей, не требует воздушного потока для работы.

Шаг первый: дизайн и теория
Принцип работы батарей основан на химической реакции, известной как окислительно-восстановительная реакция. В окислительно-восстановительной реакции одно вещество окисляется (теряет электрон), а другое восстанавливается (приобретает электрон). Довольно просто. Любая батарейка устроена схожим образом, в ней обязательны три элемента, между которыми происходит химическая реакция, в результате которой возникает электричество: электроды — анод, катод, и электролит.

В этой алюминиево-металлической батарее две половины батареи пропитаны физиологическим раствором и разделены специальной мембраной, пропускающей только ионы натрия и хлора. Алюминий с одной стороны начинает окисляться, в то же время как медь или сталь на противоположной стороне пытаются остаться стабильными.

Читайте также:  Расшифровка даты выпуска аккумулятора вайпер

В принципе любая батарейка или аккумулятор это две металлические пластины, помещенные в специальное химическое вещество – электролит. Одна пластина подключается к плюсу, вторая к минусу. Пока батарею не трогают, на ней остается стабильное напряжение, например, 3 или 9 В. Стоит подключить к батарейке нагрузку, лампочку, вентилятор, как от плюса к минусу потечет ток. Напряжение начнет падать и сразу же начнется окислительно-восстановительная реакция. Электроны начнут перетекать с отрицательной (-) пластины обратно на положительную, поддерживая тем самым разность потенциалов между ними.

Реакции бывают обратимыми (аккумулятор) и необратимыми (батарейка). Т.е. в батарейке реакция необратимая и ее нельзя зарядить, а в аккумуляторе обратимая и он заряжается. Если подключить аккумулятор к зарядному устройству, ток внутри него начинает течь в обратном направлении, то есть – от «+» к «-». И реакция в электролите также начинает идти в обратном направлении. В результате, продукт реакции разлагается на исходные вещества. Аккумулятор «заряжается»

Конечно, этот процесс не бесконечен и наступит момент, когда одна из пластин разрушится и химическая реакция больше не сможет проходить.


Шаг пятый: зарядка и проверка
Аккумуляторная батарея готова, но ее нужно зарядить. Можно использовать практически любой источник постоянного тока, если ток не слишком велик (до 5 А). Чтобы зарядить аккумулятор, нужно подключите анод к плюсу зарядного устройства, а катод к минусу. Во время зарядки ток начнет уменьшатся по мере того, как батарея набирает заряд. Это является хорошим признаком, и говорит о том, что батарея работает правильно. После зарядки нужно проверить аккумулятор мультиметром. Используя медный анод, мастер получил максимальное напряжение 1,44 В после скромного цикла зарядки. Максимальный ток, который он получил от батареи, был большим для такой самодельной батареи — 1.2 А. Для сравнения, лимонные или картофельные батареи обычно выдают в лучшем случае всего несколько миллиампер. Коммерческая батарея D-cell может выдавать ток более 5А.

Так же мастер провел тест, в котором сравнил свою батарею с настоящим D-элементом на 1,5 В. Обе батареи тестировались с небольшим двигателем постоянного тока. При этом измерялся ток и скорость вращения двигателя. И самодельная и промышленная батареи показали примерно одинаковые результаты.

Конечно, этот аккумулятор не идеален. Ионообменная мембрана по-прежнему пропускает некоторые растворимые соли меди на катодную сторону батареи, где они вступают в реакцию с образованием металлической меди и нерастворимых оксидов и гидроксидов меди. Кроме того, алюминиевый катод постепенно приходит в негодность, по сути, растворяется. Но, несмотря на это, батарея очень удобна и может быть легко собрана и использована людьми в экстремальной ситуации. Увеличивая размер батареи, и подключая несколько ячеек последовательно или параллельно, можно производить или хранить очень большое количество энергии с небольшими затратами.

Источник

Эксперимент Аккумулятор своими руками

Помогал я на днях сыну с уроками. По химии тема была — электролиз.

И раз уж мой сайт и Ютуб-канал посвящены различным Самоделкам, решено было собрать самодельный источник постоянного тока.

В конце статьи, можете посмотреть видеоверсию эксперимента (качество правда «не очень»)

Для эксперимента мне понадобилось:

— 9 поллитровых банок

— мультиметр и смартфон

В нашем эксперименте, в качестве электродов будут участвовать 3 металла : медь, алюминий, цинк (оцинкованная сталь).

Одним из электродов в каждой банке будет медь, вторым — либо алюминий, либо цинк.

Согласно таблице «Электрохимический ряд металлов», чем дальше друг от друга металлы электродов, тем большее напряжение будет в одной банке.

В качестве электролита используем соляной раствор. На 9 банок ушло 1 кг. соли.

В качестве медных электродов, я использовал жилы кабеля ПВС 3х2,5. Многожильный провод имеет значительно большую площадь поверхности, по сравнению с «моножилой». Поэтому… я «распушил» каждую жилу, чтобы образовалась вот такая мочалка:

Медный электрод соединил с алюминиевым. Конечно… такой контакт недолговечен, но он мне и нужен-то только на время эксперимента!

В качестве цинковых электродов, использован оцинкованный профиль для гипсокартона.

Внутри банки, электроды не должны соприкасаться. Поэтому медную мочалку я отделил пластиковой проставкой, вырезанной из ПЭТ-бутылки.

Там где алюминиевые электроды — обернул алюминий туалетной бумагой.

Непосредственного контакта не будет, а для электролита бумага не будет препятствием!

Залил приготовленный соляной раствор в банки. В эксперименте участвуют 6 банок с электродами из меди и алюминия и…

… и 3 банки с электродами из меди и цинка. Итого — 9 банок.

Целью эксперимента будет — зарядка смартфона. Для этого я изготовил переходник, о котором можно посмотреть здесь .

Измеряем суммарное напряжение, которое образовали 9 банок.

Как видим: 5,15 Вольт.

А теперь посмотрим какое напряжение в одной банке между медью и алюминием.

Медь с цинком показали немного большее напряжение: 0,6В

Некоторые зрители выразили мнение, что это связано с тем, что оцинкованные электроды имеют большую площадь. Я с этим не согласен. Большая площадь будет влиять на величину тока, но не на величину напряжения.

По таблице приведённой выше, разность потенциалов между медью и алюминием должна быть выше, по факту же получается наоборот. Скорее всего это связано с наличием оксидной плёнки, образовавшейся на поверхности алюминия. А вы как думаете?

Ну да ладно эту теорию…

Давайте посмотрим что получилось в реальности. Наверняка всех интересует, какой ток может дать эта сборка.

Подключаю к переходнику свой старенький смартфон и… О чудо. Зарядка пошла.

Оставляю схему в покое на полчаса…

К сожалению, через полчаса уровень зарядки как показывал 1%, так и остался на тех же значениях. Я было подумал, что эксперимент не удался. Но на всякий случай поставил на зарядку штатным блоком питания — результат тот же. Значит мой самодельный аккумулятор не виноват. Просто напросто у этого смартфона «уваленная» батарея. Неудачный экземпляр для опытов.

Тут же, я подключил свой рабочий смартфон (который кстати, на тот момент был практически разряжен) и через 1 час я обнаружил, что смартфон зарядился на 42%. Ёмкость батареи — 2000мАч.

Источник