Меню

Аккумулятор никель металлгидридный емкость

Аккумулятор никель металлгидридный емкость

Никель-металлогидридные (Ni─MH) аккумуляторы относятся к группе щелочных. Это химические источники тока, в которых в роли анода выступает водородный металлогидридный электрод, катода ─ оксид никеля, а электролитом является щёлочь гидроксид калия (KOH). Ni─MH аккумуляторы имеют конструкцию, аналогичную Ni─Cd аккумуляторам. По протекающим в них процессам они похожи на никель-водородные аккумуляторы. По своей удельной энергоёмкости никель─металлогидридные превосходят оба этих типа. В этой статье мы подробно разберём устройство и характеристики Ni─MH аккумуляторы, также их плюсы и минусы.

Возникновение и развитие Ni─MH аккумуляторов

Никель-металлогидридные начали создавать ещё в середине прошлого века. Они разрабатывались с учётом преодолеть те недостатки, которые имели никель-кадмиевые аккумуляторы. Во время проводимых исследований учёные разработали новые никель─водородные батареи, применяемые в космической технике. Им удалось разработать новый способ накопления водорода. В новом типе аккумуляторов водород собирался в определённых материалах, а точнее сплавах некоторых металлов. Эти сплавы могли накапливать объем водорода, в тысячу раз превышающий их собственный объем. В состав сплавов входили 2 или более металлов. Один из них накапливал водород, а другой выступал в роли катализатора, который обеспечивал переход атомов водорода в металлическую решётку.

В Ni─MH аккумуляторах могут использоваться различные комбинации металлов. В результате есть возможности по изменению свойств сплава. Для создания никель─металлогидридных аккумуляторов был налажен выпуск сплавов, которые работают в условиях комнатной температуры и при низком давлении водорода. Разработка различных сплавов и совершенствование технологии производства Ni─MH аккумуляторов ведётся по настоящее время. Современные образцы аккумуляторов этого типа обеспечивают до 2 тысяч циклов заряд-разряд. При этом ёмкость минусового электрода снижается не больше, чем на 30 процентов. Такой результат достигается при использовании сплавов никеля с различными редкоземельными металлами. В 1975 году Билл получил патент на сплав LaNi5. Это был первый образец никель─металлогидридного аккумулятора, где этот сплав был в роли активного вещества. Что касается более ранних экземпляров из других металлогидридных сплавов, то там не была обеспечена требуемая ёмкость.

В дальнейшем был заменён отрицательный электрод, что дало увеличение активной массы плюсового электрода в 1,3─2 раза. Именно от плюсового электрода и зависит ёмкость этого типа аккумуляторов. Ni─MH аккумуляторы обладают более высокими удельными энергетическими параметрами, чем никель─кадмиевые. Помимо высокой энергетической плотности никель-металлогидридных аккумуляторных батарей, они ещё состоят из нетоксичных материалов, что упрощает их эксплуатацию и утилизацию. Благодаря этим факторам аккумуляторы Ni─MH стали успешно распространяться. Дополнительно можете прочитать про утилизацию аккумуляторов для автомобиля. [soc1]

Применение никель-металлогидридных аккумуляторов

Ni─MH аккумуляторы широко применяются для питания различной электроники, работающей в автономном режиме. В большинстве своём они выполняются в виде АА или ААА батарей. Хотя есть и другие исполнения, в том числе, промышленные аккумуляторные батареи. Сфера применения у них практически полностью совпадает с никель─кадмиевыми и даже шире, поскольку они не содержат токсичных материалов.

Никель-металлогидридные аккумуляторы

Никель-металлогидридные аккумуляторы

Никель-металлогидридные аккумуляторы Продаваемые на рынке никель─металлогидридные аккумуляторы можно разделить на две большие группы по ёмкости:

  • 1500—3000 мАч;
  • 300—1000 мАч.

Первая группа (1500—3000 мАч) используется в различных устройствах, которые имеют высокое энергопотребление за короткий промежуток времени. При этом, как правило, отсутствует предварительное хранение батареек. В качестве примера можно привести такие устройства, как плееры, фотоаппараты, радиоуправляемые модели и другие гаджеты, где энергия аккумулятора Ni─MH расходуется за короткое время. Вторая группа (300—1000 мАч) подходит, когда расход энергии начинается после определённого временного интервала. Примером могут служить ручные фонарики, рации, игрушки, GPS-навигаторы и других устройств с умеренным энергопотреблением, долгое время находящихся в автономном режиме.

Устройство Ni─MH аккумуляторов

Конструкция никель─металлогидридных аккумуляторов

Ni─MH цилиндрической формы

В этой конструкции разноимённые электроды разделены сепаратором. Все вместе они свёрнуты в рулон. Он помещается в корпус и герметизируется крышкой со специальной прокладкой. В крышке сделан аварийный клапан, рассчитанный на открытие при возрастании давления внутри аккумулятора до 2─4 МПа. На рисунке ниже показана конструкция никель─металлогидридного цилиндрического аккумулятора.

Конструкция никель─металлогидридных аккумуляторов цилиндрической формы [soc2]

Ni─MH призматической формы

В Ni─MH аккумуляторах призматической формы поочерёдное размещение разноимённых электродов. Их также разделяет сепаратор. Сборка электродов находится в металлическом или пластиковом корпусе, который закрывается герметичной крышкой. В крышке в большинстве случаев ставится датчик или клапан давления. Ниже представлена конструкция никель-металлогидридного аккумулятора призматической формы.

Конструкция никель─металлогидридных аккумуляторов призматической формы

Положительный электрод Ni─MH аккумуляторов выполняется из тех же материалов, что используются в Ni─Cd аккумуляторных батареях. Это оксидно─никелевая металлокерамика, пенополимерные и войлочные материалы. Отрицательные электроды для Ni─MH аккумуляторов могут быть следующих вариантов:

  • ламель. Водород─абсорбирующий сплав в виде порошка запрессовывается в сетку из никеля;
  • пеноникелевый. Паста из сплава и связующего вещества вводится в пеноникелевую основу с последующей сушкой и прессованием;
  • фольга. Паста из сплава и связующего вещества наносится на перфорированную фольгу (из никеля или стали) с последующей сушкой и прессованием;
  • вальцованный. Порошок из сплава и связующего посредством прокатки (вальцевание) наносится на решётку или сетку (медную или никелевую);
  • спечённый. Сплав в порошкообразном виде напрессовывается на сетку Ni и затем обжигается в водороде.

Удельные ёмкости у всех этих вариантов электродов близки по значению. Они зависят в основном от ёмкости используемого сплава. Теперь стоит несколько подробнее рассмотреть конструкцию разных электродов никель─металлогидридных аккумуляторов.

Устройство электродов Ni─MH аккумуляторов

Устройство металловодородного электрода

Основной материал, который определяет характеристики Ni─MH аккумуляторов, это сплав, поглощающий водород. Он может абсорбировать объем водорода в тысячу раз больший, чем его собственный объем. Наиболее распространённым сплавом для производства металловодородных электродов стал LaNi5. Так обозначается группа сплавом, где никель частично заменён на кобальт, марганец и алюминий. Это сделано для увеличения его активности и стабильности. В целях экономии ряд производителей используют не лантана, а Мm (миш-металл). Он представляет собой смесь редкоземельных элементов в соотношении, близком к тому, что есть в природной руде. Там кроме La есть неодим, церий, празеодим. Во время прохождения цикла заряд-разряд кристаллическая решётка сплава сжимается и расширяется на 15─25 процентов. Это обусловлено процессами десорбции и абсорбции водорода. В результате растёт внутреннее напряжение и в сплаве образуются трещины. Из-за образования трещин растёт площадь поверхности, подвергающейся коррозии из-за реакции со щёлочью (электролит). В результате происходит постепенное снижение разрядной ёмкости отрицательного электрода. Поскольку в аккумуляторной батарее имеется ограниченное количество электролита, все описанные процессы порождают проблемы, которые связаны с его перераспределением. В результате коррозии сплава его поверхность становится химически пассивной. На ней образуются оксиды и гидроксиды, стойкие к коррозии. Они увеличивают перенапряжение при реакции на металлогидридном электроде. Продукты коррозии образуются с потреблением водорода и кислорода из щелочи. Это ведёт к уменьшению количества электролита в батарее и увеличению её внутреннего сопротивления. Все эти процессы отрицательно сказываются на сроке эксплуатации Ni─MH аккумуляторов. Чтобы снизить нежелательные процессы коррозии и диспергирования, производители используют 2 методики. Первая включает в себя микрокапсулирование частиц сплава. Это значит, что поверхность покрывается пористым слоем меди или никеля малой толщины (5─10 процентов). Более распространена вторая методика. Эта технология подразумевает обработку частиц сплава в щелочном растворе. В результате образуется защитная плёнка, которая проницаема для водорода.

Устройство оксидно─никелевого электрода

Оксидно-никелевые электроды можно встретить в следующих исполнениях:

  • ламельные;
  • безламельные металлокерамические спечёные;
  • прессованные.

[soc3] Всё большую популярность обретают пенополимерные и безламельные войлочные электроды. Конструктивно ламельные оксидно─никелевые электроды состоят из соединённых ламелей. Ламель – это перфорированные коробочки из тонкой стальной никелированной ленты. Её толщина составляет 0,1 миллиметра. Металлокерамические спечённые электроды имеют пористую структуру металлокерамической основы. В порах, которых в основе не менее 70 процентов, находится активная масса. Материал основы – это карбонильный никелевый мелкодисперсный порошок (60─65 процентов) и карбонат аммония (или карбамид). Этот порошок напрессовывается, накатывается на сетку из никеля или стали. Также может выполняться его напыление. Далее по технологии сетка с порошком проходит термообработку в атмосфере водорода. Температура при этом составляет 800─960 градусов Цельсия. Карбамид или карбонат аммония разлагается и происходит спекание никеля. В результате получается основа толщиной 1─2,3 миллиметра. Пористость получаемой основы составляет 80─85 процентов, а радиус пор равен 5─20 микрометров. Далее полученная основа пропитывается нагретым до 60─90 градусов раствором сульфата или нитрата никеля. А затем ещё делается пропитка раствором щелочи, осаждающей оксиды и гидроксиды никеля.

Читайте также:  Зимой как зарядить автомобильный аккумулятор

Фольговые электроды являются разновидностью спечённых электродов. Их производят следующим образом. На перфорированную ленту из никеля толщиной около 0,05 миллиметра с двух сторон наносится спиртовая эмульсия никелевого карбонильного порошка со связующими веществами. Далее проводится спекание и пропитка реагентами (химическая или электрохимическая). Толщина электрода равна 0,4─0,6 миллиметра. Прессованные электроды производятся путём напрессовки на ленту или сетку из стали активной массы. Давление при этом составляет 35─60 МПа. В качестве активной массы используется смесь гидроксидов никеля и кобальта, графита, связующих веществ. Металловойлочные электроды представляют собой высокопористую основу, состоящую из волокон углерода или никеля. Пористость основы составляет от 95 процентов. Войлочный электрод делается на основе углеграфитового или полимерного фетра, покрытого никелем. Толщина электрода может быть от 0,8 до 10 миллиметров. Активная масса внедряется в войлок различными методиками. Есть технология, где вместо войлока используют пеноникель. Его делают никелированием пенополиуретана и дальнейшим отжигом в восстановительной атмосфере. В высокопористую среду вносят добавки посредством намазки. Это паста, включающая в себя гидроксид никеля со связкой. Далее основу сушат и вальцуют. Электроды металловойлочного и пеноникелевых типов имеют высокую удельную ёмкость и существенный ресурс работы.

Реакции в никель─металлогидридных аккумуляторах

Как уже разбиралось выше, в Ni─MH аккумуляторе положительный электрод оксидно─никелевый также, как в Ni─Cd батареях. А вот отрицательный электрод вместо кадмиевого используется из никелевого сплава с добавлением редкоземельных элементов. Какие реакции протекают в Ni─MH аккумуляторах? На оксидно-никелевом электроде (положительный) протекает реакция: При заряде Ni(OH) 2 + OH −- ⇒ NiOOH + H 2O + e − При разряде NiOOH + H 2O + e − ⇒ Ni(OH) 2 + OH − На электроде из никелевого сплава (отрицательный) протекает реакция: При заряде M + H 2O + e − ⇒ MH + OH −- При разряде MH + OH − ⇒ M + H 2O + e − Суммарная реакция, протекающая в Ni─MH аккумуляторе, выглядит следующим образом: При заряде Ni(OH) 2 + M ⇒ NiOOH + MH При разряде NiOOH + MH ⇒ Ni(OH) 2 + M При этом щелочной электролит не принимает участия в реакции образования тока. После того, как при заряде аккумулятора до уровня 70─80 процентов на оксидно─никелевом запускается выделение кислорода в соответствии со следующей реакцией: 2OH − ⇒ 1/2O 2 + H 2O + 2e − На отрицательном электроде происходит реакция восстановления этого кислорода: 1/2O 2 + H 2O + 2e − ⇒ 2OH − Так описывается процесс перезарядки никель─металлогидридного аккумулятора. Эти реакции образуют собой замкнутую циркуляцию кислорода. В процессе восстановления кислорода происходит увеличение ёмкости металлогидридного электрода благодаря выделению группы ОН − . [banner1]

Источник



Что нужно знать о Ni-MH аккумуляторах

Содержание

  1. Немного истории
  2. Как используются эти устройства
  3. Зарядка Ni-MH устройств
  4. Контроль и рекомендации по зарядке-разрядке
  5. Восстановление Ni-MH аккумуляторов
  6. Достоинства и недостатки

Ni-MH аккумуляторы (никель-металлогидридные) входят в группу щелочных. Представляют собой источники тока химического типа, где в качестве катода выступает оксид никеля, анода — водородный металлгидридный электрод. Щелочь является электролитом. Они похожи на никель-водородные аккумуляторы, но превосходят их по энергоемкости.

Немного истории

Производство Ni-MH аккумуляторов началось в середине двадцатого века. Разрабатывались они с учетом недостатков устаревших никель-кадмиевых батарей. В NiNH могут использоваться разные комбинации металлов. Для их производства были разработаны специальные сплавы и металл, работающие при комнатной температуре и низком водородном давлении.

Промышленное производство началось в восьмидесятых годах. Изготавливаются и совершенствуются сплавы и металл для Ni-MH и сегодня. Современные устройства подобного типа могут обеспечивать до 2 тысяч циклов заряд-разряд. Подобный результат достижим по причине применения никелевых сплавов с редкоземельными металлами.

Как используются эти устройства

Никель-металлогидридные аппараты широко используются для питания разного вида электроники, которая функционирует в автономном режиме. Обычно они делаются в виде ААА либо АА батарей. Имеются и другие исполнения. Например, промышленные батареи. Сфера использования Ni-MH аккумуляторов немного шире, чем у никель-кадмиевых, потому что в их составе нет токсичных материалов.

В данный момент реализуемые на отечественном рынке никель-металлогидридные батареи по емкости делятся на 2 группы — 1500-3000 мАч и 300-1000 мАч:

  1. Первая применяется в устройствах, имеющих повышенное энергопотребление за короткое время. Это всевозможные плееры, модели с радиоуправлением, фотоаппараты, видеокамеры. В общем, приборы, быстро расходующие энергию.
  2. Вторая используется при расходе энергии, который начинается после определенного интервала времени. Это игрушки, фонари, рации. На аккумуляторе работают приборы, умеренно употребляющие электроэнергию, находящиеся в автономном режиме продолжительное время.

Зарядка Ni-MH устройств

Зарядка бывает капельной и быстрой. Изготовители не рекомендуют первую, потому что при ней появляются сложности с точным определением прекращения подачи тока на устройство. По этой причине может возникнуть мощный перезаряд, что приведет к деградации аккумулятора. Заряжается Ni-MH аккумулятор при помощи быстрого варианта. Коэффициент полезного действия тут несколько выше, чем у капельного вида зарядки. Ток выставляется — 0,5-1 С.

Как заряжается гидридный аккумулятор:

  • определяется наличие батареи;
  • квалификация устройства;
  • предварительная зарядка;
  • быстрая зарядка;
  • дозарядка;
  • поддерживающая зарядка.

При быстрой зарядке нужно иметь хорошее ЗУ. Оно должно контролировать окончание процесса по разным, независимым друг от друга критериям. К примеру, у Ni-Cd аппаратов достаточно контроля по дельте напряжения. А у NiMH нужно, чтобы аккумулятор следил за температурой и дельтой как минимум.

Контроль и рекомендации по зарядке-разрядке

Для правильной работы Ni-MH следует помнить «Правило трех П»: «Не перегревать», «Не перезаряжать», «Не переразряжать».

Чтобы предупредить перезарядку батарей, используются такие методы контролирования:

  1. Прекращение заряда по скорости изменения температуры. При использовании данной методики во время зарядки температура батареи находится под постоянным контролем. Когда показатели поднимаются быстрее, чем нужно, зарядка прекращается.
  2. Метод прекращения заряда по максимальному его времени.
  3. Прекращение заряда по абсолютной температуре. Тут температура аккумуляторной батареи контролируется в процессе заряда. При достижении максимального значения быстрый заряд прекращается.
  4. Метод прекращения по отрицательной дельте напряжения. Перед завершением зарядки батареи при осуществлении кислородного цикла повышается температура NiMH устройства, что приводит к понижению напряжения.
  5. Максимальное напряжение. Метод используется для отключения заряда устройств с повышенным внутренним сопротивлением. Последнее появляется в конце срока службы батареи по причине недостатка электролита.
  6. Максимальное давление. Метод применяется для призматических аккумуляторов большой емкости. Уровень разрешенного давления в таком устройстве зависит от его размера и конструкции и находится в интервале 0,05-0,8 МПа.

Для уточнения времени зарядки Ni-MH аккумулятора с учетом всех характеристик можно применить формулу: время зарядки (ч) = емкость (мАч) / сила тока зарядного устройства (мА). Например, имеется аккумулятор с емкостью 2000 миллиамперчасов. Ток заряда в ЗУ — 500 мА. Емкость делится на ток и получается 4. То есть батарея будет заряжаться 4 часа.

Обязательные правила, которых нужно придерживаться для правильного функционирования никель-металлогидридного устройства:

  1. Эти аккумуляторы гораздо чувствительнее к нагреву, нежели никель-кадмиевые, перегружать их нельзя. Перегрузка отрицательно скажется на токоотдаче (способности держать и выдавать накопленный заряд).
  2. Металлогидридные аккумуляторы после приобретения можно «потренировать». Сделать 3-5 циклов зарядки/разрядки, что позволит достигнуть придела емкости, потерянной при перевозке и хранении устройства после выхода с конвейера.
  3. Хранить нужно аккумуляторы с небольшим количеством заряда, примерно 20-40% от номинальной емкости.
  4. После разрядки либо зарядки следует дать устройству остыть.
  5. Если в электронном устройстве используется одинаковая сборка аккумуляторов в режиме дозаряда, то время от времени нужно разряжать каждый из них до напряжения 0,98, а потом полностью заряжать. Эту процедуру циклирования рекомендуется выполнять один раз на 7-8 циклов дозарядки аккумуляторов.
  6. Если нужно разрядить NiMH, то следует придерживаться минимального показателя 0,98. Если напряжение упадет ниже 0,98, то он может перестать заряжаться.
Читайте также:  Как включить ipad без аккумулятора

Восстановление Ni-MH аккумуляторов

Из-за «эффекта памяти» данные устройства иногда теряют некоторые характеристики и большую часть емкости. Это происходит при многократных циклах неполной разрядки и последующей зарядке. В результате такой работы устройство «запоминает» меньшую границу разрядки, по этой причине понижается его емкость.

Чтобы избавиться от данной проблемы, нужно постоянно выполнять тренировку и восстановление. Лампочкой либо зарядным устройством разряжается до 0,801 вольта, далее батарея полностью заряжается. Если долгое время аккумулятор не проходил процесс восстановления, то желательно произвести 2-3 подобных цикла. Тренировать его желательно раз в 20-30 дней.

Изготовители аккумуляторов Ni-MH утверждают, что «эффект памяти» отнимает примерно 5% емкости. Восстановить ее можно с помощью тренировок. Важным моментом при восстановлении Ni-MH является наличие у ЗУ функции разрядки с контролем минимального напряжения. Что нужно для недопущения сильного разряда устройства при восстановлении. Это незаменимо, когда неизвестна начальная степень заряда, и предположить ориентировочное время разряда невозможно.

Если неизвестна степень заряженности батареи, разряжать ее следует под полным контролем напряжения, иначе подобное восстановление приведет к глубокой разрядке. При восстановлении целой батареи сначала рекомендуется провести полную зарядку, чтобы выровнять степень заряда.

Если аккумулятор отработал несколько лет, то восстановление зарядом и разрядом может быть бесполезным. Полезно оно для профилактики в процессе работы устройства. При эксплуатации NiMH вместе с появлением «эффекта памяти» происходит изменения объема и состава электролита. Стоит помнить, что разумнее восстанавливать элементы аккумулятора по отдельности, чем всю батарею целиком. Срок годности аккумуляторов — от одного года до пяти (зависит от конкретной модели).

Достоинства и недостатки

Значительное повышение энергетических параметров никель-металлогидридных аккумуляторов не является единственным их достоинством перед кадмиевыми. Отказавшись от использования кадмия, производители начали использовать более экологически чистый металл. Гораздо легче решаются вопросы с утилизацией.

Благодаря этим достоинствам и тому, что в изготовлении используется металл — никель, производство Ni-MH устройств резко выросло, если сравнивать с никель-кадмиевыми аккумуляторами. Удобны они и тем, что для уменьшения разрядного напряжения при длительных перезарядках проводить полную разрядку (до 1 вольта) надо раз в 20-30 дней.

Немного о недостатках:

  1. Изготовители ограничили Ni-MH батареи десятью элементами, потому что с увеличением циклов заряд-разряд и срока службы появляется опасность перегрева и переполюсовки.
  2. Эти аккумуляторы работают в более узком температурном диапазоне, нежели никель-кадмиевые. Уже при -10 и +40°С они теряют свою работоспособность.
  3. При зарядке Ni-MH аккумулятора выделяют много тепла, поэтому нуждаются в предохранителях либо температурных реле.
  4. Повышенный самозаряд, наличие которого обусловлено реакцией оксидно-никелевого электрода с водородом из электролита.

Деградация Ni-MH батарей определяется понижением сорбирующей способности отрицательного электрода при циклировании. В цикле разрядки-зарядки происходит изменение объема кристаллической решетки, что способствует образованию ржавчины, трещин во время реакции с электролитом. Появление коррозии происходит при поглощении батареей водорода и кислорода. Это приводит к уменьшению количества электролита и повышению внутреннего сопротивления.

Нужно учитывать, что характеристики батарей зависят от технологии обработки сплава отрицательного электрода, его структуры и состава. Металл для сплавов тоже имеет значение. Все это заставляет производителей очень внимательно выбирать поставщиков сплавов, а потребителей — завод-изготовитель.

Источник

Аккумуляторы NiMH (никель-металлгидридные), (таблица) 322

  • 20
  • 40
  • 60

Никель-металлогидридные аккумуляторы получили широкое распространение благодаря своей экологичности, основная область использования – портативная аппаратура. Данная продукция поддается вторичной переработке. Никель-металлогидридные аккумуляторы имеют достаточно большую мощность, этот показатель почти на 50% выше, чем у обычных NiCd аккумуляторов. Не менее важная характеристика – слабо выраженный эффект памяти, то есть часто заряжать такие аккумуляторы не придется. Транспортировка аккумуляторов не требует специальных условий.

Посмотреть и купить товар вы можете в наших магазинах в городах: Москва, Санкт-Петербург, Архангельск, Барнаул, Белгород, Владимир, Волгоград, Вологда, Воронеж, Гомель, Екатеринбург, Иваново, Ижевск, Казань, Калуга, Кемерово, Киров, Кострома, Краснодар, Красноярск, Курган, Курск, Липецк, Минск, Набережные Челны, Нижний Новгород, Новосибирск, Омск, Орёл, Пермь, Псков, Ростов-на-Дону, Рязань, Самара, Саранск, Саратов, Смоленск, Ставрополь, Тверь, Томск, Тула, Тюмень, Уфа, Чебоксары, Челябинск, Ярославль. Доставка заказа почтой, через систему доставки Pickpoint или через салоны «Связной» в следующие города: Тольятти, Барнаул, Ульяновск, Иркутск, Хабаровск, Владивосток, Махачкала, Томск, Оренбург, Новокузнецк, Астрахань, Пенза, Чебоксары, Калининград, Улан-Удэ, Сочи, Иваново, Брянск, Сургут, Нижний Тагил, Архангельск, Чита, Курган, Владикавказ, Грозный, Мурманск, Тамбов, Петрозаводск, Кострома, Нижневартовск, Новороссийск, Йошкар-Ола и еще в более чем 1000 городов и населенных пунктов по всей России.

Товары из группы «Аккумуляторы NiMH (никель-металлгидридные)» вы можете купить оптом и в розницу.

Источник

Всё о Ni─MH аккумуляторах: устройство, характеристики, плюсы и минусы

Никель-металлогидридные (Ni─MH) аккумуляторы относятся к группе щелочных. Это химические источники тока, в которых в роли анода выступает водородный металлогидридный электрод, катода ─ оксид никеля, а электролитом является щёлочь гидроксид калия (KOH). Ni─MH аккумуляторы имеют конструкцию, аналогичную Ni─Cd аккумуляторам. По протекающим в них процессам они похожи на никель-водородные аккумуляторы. По своей удельной энергоёмкости никель─металлогидридные превосходят оба этих типа. В этой статье мы подробно разберём устройство и характеристики Ni─MH аккумуляторы, также их плюсы и минусы.

Возникновение и развитие Ni─MH аккумуляторов

Никель-металлогидридные начали создавать ещё в середине прошлого века. Они разрабатывались с учётом преодолеть те недостатки, которые имели никель-кадмиевые аккумуляторы. Во время проводимых исследований учёные разработали новые никель─водородные батареи, применяемые в космической технике. Им удалось разработать новый способ накопления водорода. В новом типе аккумуляторов водород собирался в определённых материалах, а точнее сплавах некоторых металлов. Эти сплавы могли накапливать объем водорода, в тысячу раз превышающий их собственный объем. В состав сплавов входили 2 или более металлов. Один из них накапливал водород, а другой выступал в роли катализатора, который обеспечивал переход атомов водорода в металлическую решётку.

В Ni─MH аккумуляторах могут использоваться различные комбинации металлов. В результате есть возможности по изменению свойств сплава. Для создания никель─металлогидридных аккумуляторов был налажен выпуск сплавов, которые работают в условиях комнатной температуры и при низком давлении водорода. Разработка различных сплавов и совершенствование технологии производства Ni─MH аккумуляторов ведётся по настоящее время. Современные образцы аккумуляторов этого типа обеспечивают до 2 тысяч циклов заряд-разряд. При этом ёмкость минусового электрода снижается не больше, чем на 30 процентов. Такой результат достигается при использовании сплавов никеля с различными редкоземельными металлами. В 1975 году Билл получил патент на сплав LaNi5. Это был первый образец никель─металлогидридного аккумулятора, где этот сплав был в роли активного вещества. Что касается более ранних экземпляров из других металлогидридных сплавов, то там не была обеспечена требуемая ёмкость.

В дальнейшем был заменён отрицательный электрод, что дало увеличение активной массы плюсового электрода в 1,3─2 раза. Именно от плюсового электрода и зависит ёмкость этого типа аккумуляторов. Ni─MH аккумуляторы обладают более высокими удельными энергетическими параметрами, чем никель─кадмиевые. Помимо высокой энергетической плотности никель-металлогидридных аккумуляторных батарей, они ещё состоят из нетоксичных материалов, что упрощает их эксплуатацию и утилизацию. Благодаря этим факторам аккумуляторы Ni─MH стали успешно распространяться. Дополнительно можете прочитать про утилизацию аккумуляторов для автомобиля. [soc1]

Применение никель-металлогидридных аккумуляторов

Ni─MH аккумуляторы широко применяются для питания различной электроники, работающей в автономном режиме. В большинстве своём они выполняются в виде АА или ААА батарей. Хотя есть и другие исполнения, в том числе, промышленные аккумуляторные батареи. Сфера применения у них практически полностью совпадает с никель─кадмиевыми и даже шире, поскольку они не содержат токсичных материалов.

Никель-металлогидридные аккумуляторы

Никель-металлогидридные аккумуляторы

Никель-металлогидридные аккумуляторы Продаваемые на рынке никель─металлогидридные аккумуляторы можно разделить на две большие группы по ёмкости:

  • 1500—3000 мАч;
  • 300—1000 мАч.

Первая группа (1500—3000 мАч) используется в различных устройствах, которые имеют высокое энергопотребление за короткий промежуток времени. При этом, как правило, отсутствует предварительное хранение батареек. В качестве примера можно привести такие устройства, как плееры, фотоаппараты, радиоуправляемые модели и другие гаджеты, где энергия аккумулятора Ni─MH расходуется за короткое время. Вторая группа (300—1000 мАч) подходит, когда расход энергии начинается после определённого временного интервала. Примером могут служить ручные фонарики, рации, игрушки, GPS-навигаторы и других устройств с умеренным энергопотреблением, долгое время находящихся в автономном режиме.

Читайте также:  Honda accord 2010 аккумулятор

Устройство Ni─MH аккумуляторов

Конструкция никель─металлогидридных аккумуляторов

Ni─MH цилиндрической формы

В этой конструкции разноимённые электроды разделены сепаратором. Все вместе они свёрнуты в рулон. Он помещается в корпус и герметизируется крышкой со специальной прокладкой. В крышке сделан аварийный клапан, рассчитанный на открытие при возрастании давления внутри аккумулятора до 2─4 МПа. На рисунке ниже показана конструкция никель─металлогидридного цилиндрического аккумулятора.

Конструкция никель─металлогидридных аккумуляторов цилиндрической формы [soc2]

Ni─MH призматической формы

В Ni─MH аккумуляторах призматической формы поочерёдное размещение разноимённых электродов. Их также разделяет сепаратор. Сборка электродов находится в металлическом или пластиковом корпусе, который закрывается герметичной крышкой. В крышке в большинстве случаев ставится датчик или клапан давления. Ниже представлена конструкция никель-металлогидридного аккумулятора призматической формы.

Конструкция никель─металлогидридных аккумуляторов призматической формы

Положительный электрод Ni─MH аккумуляторов выполняется из тех же материалов, что используются в Ni─Cd аккумуляторных батареях. Это оксидно─никелевая металлокерамика, пенополимерные и войлочные материалы. Отрицательные электроды для Ni─MH аккумуляторов могут быть следующих вариантов:

  • ламель. Водород─абсорбирующий сплав в виде порошка запрессовывается в сетку из никеля;
  • пеноникелевый. Паста из сплава и связующего вещества вводится в пеноникелевую основу с последующей сушкой и прессованием;
  • фольга. Паста из сплава и связующего вещества наносится на перфорированную фольгу (из никеля или стали) с последующей сушкой и прессованием;
  • вальцованный. Порошок из сплава и связующего посредством прокатки (вальцевание) наносится на решётку или сетку (медную или никелевую);
  • спечённый. Сплав в порошкообразном виде напрессовывается на сетку Ni и затем обжигается в водороде.

Удельные ёмкости у всех этих вариантов электродов близки по значению. Они зависят в основном от ёмкости используемого сплава. Теперь стоит несколько подробнее рассмотреть конструкцию разных электродов никель─металлогидридных аккумуляторов.

Устройство электродов Ni─MH аккумуляторов

Устройство металловодородного электрода

Основной материал, который определяет характеристики Ni─MH аккумуляторов, это сплав, поглощающий водород. Он может абсорбировать объем водорода в тысячу раз больший, чем его собственный объем. Наиболее распространённым сплавом для производства металловодородных электродов стал LaNi5. Так обозначается группа сплавом, где никель частично заменён на кобальт, марганец и алюминий. Это сделано для увеличения его активности и стабильности. В целях экономии ряд производителей используют не лантана, а Мm (миш-металл). Он представляет собой смесь редкоземельных элементов в соотношении, близком к тому, что есть в природной руде. Там кроме La есть неодим, церий, празеодим. Во время прохождения цикла заряд-разряд кристаллическая решётка сплава сжимается и расширяется на 15─25 процентов. Это обусловлено процессами десорбции и абсорбции водорода. В результате растёт внутреннее напряжение и в сплаве образуются трещины. Из-за образования трещин растёт площадь поверхности, подвергающейся коррозии из-за реакции со щёлочью (электролит). В результате происходит постепенное снижение разрядной ёмкости отрицательного электрода. Поскольку в аккумуляторной батарее имеется ограниченное количество электролита, все описанные процессы порождают проблемы, которые связаны с его перераспределением. В результате коррозии сплава его поверхность становится химически пассивной. На ней образуются оксиды и гидроксиды, стойкие к коррозии. Они увеличивают перенапряжение при реакции на металлогидридном электроде. Продукты коррозии образуются с потреблением водорода и кислорода из щелочи. Это ведёт к уменьшению количества электролита в батарее и увеличению её внутреннего сопротивления. Все эти процессы отрицательно сказываются на сроке эксплуатации Ni─MH аккумуляторов. Чтобы снизить нежелательные процессы коррозии и диспергирования, производители используют 2 методики. Первая включает в себя микрокапсулирование частиц сплава. Это значит, что поверхность покрывается пористым слоем меди или никеля малой толщины (5─10 процентов). Более распространена вторая методика. Эта технология подразумевает обработку частиц сплава в щелочном растворе. В результате образуется защитная плёнка, которая проницаема для водорода.

Устройство оксидно─никелевого электрода

Оксидно-никелевые электроды можно встретить в следующих исполнениях:

  • ламельные;
  • безламельные металлокерамические спечёные;
  • прессованные.

[soc3] Всё большую популярность обретают пенополимерные и безламельные войлочные электроды. Конструктивно ламельные оксидно─никелевые электроды состоят из соединённых ламелей. Ламель – это перфорированные коробочки из тонкой стальной никелированной ленты. Её толщина составляет 0,1 миллиметра. Металлокерамические спечённые электроды имеют пористую структуру металлокерамической основы. В порах, которых в основе не менее 70 процентов, находится активная масса. Материал основы – это карбонильный никелевый мелкодисперсный порошок (60─65 процентов) и карбонат аммония (или карбамид). Этот порошок напрессовывается, накатывается на сетку из никеля или стали. Также может выполняться его напыление. Далее по технологии сетка с порошком проходит термообработку в атмосфере водорода. Температура при этом составляет 800─960 градусов Цельсия. Карбамид или карбонат аммония разлагается и происходит спекание никеля. В результате получается основа толщиной 1─2,3 миллиметра. Пористость получаемой основы составляет 80─85 процентов, а радиус пор равен 5─20 микрометров. Далее полученная основа пропитывается нагретым до 60─90 градусов раствором сульфата или нитрата никеля. А затем ещё делается пропитка раствором щелочи, осаждающей оксиды и гидроксиды никеля.

Фольговые электроды являются разновидностью спечённых электродов. Их производят следующим образом. На перфорированную ленту из никеля толщиной около 0,05 миллиметра с двух сторон наносится спиртовая эмульсия никелевого карбонильного порошка со связующими веществами. Далее проводится спекание и пропитка реагентами (химическая или электрохимическая). Толщина электрода равна 0,4─0,6 миллиметра. Прессованные электроды производятся путём напрессовки на ленту или сетку из стали активной массы. Давление при этом составляет 35─60 МПа. В качестве активной массы используется смесь гидроксидов никеля и кобальта, графита, связующих веществ. Металловойлочные электроды представляют собой высокопористую основу, состоящую из волокон углерода или никеля. Пористость основы составляет от 95 процентов. Войлочный электрод делается на основе углеграфитового или полимерного фетра, покрытого никелем. Толщина электрода может быть от 0,8 до 10 миллиметров. Активная масса внедряется в войлок различными методиками. Есть технология, где вместо войлока используют пеноникель. Его делают никелированием пенополиуретана и дальнейшим отжигом в восстановительной атмосфере. В высокопористую среду вносят добавки посредством намазки. Это паста, включающая в себя гидроксид никеля со связкой. Далее основу сушат и вальцуют. Электроды металловойлочного и пеноникелевых типов имеют высокую удельную ёмкость и существенный ресурс работы.

Реакции в никель─металлогидридных аккумуляторах

Как уже разбиралось выше, в Ni─MH аккумуляторе положительный электрод оксидно─никелевый также, как в Ni─Cd батареях. А вот отрицательный электрод вместо кадмиевого используется из никелевого сплава с добавлением редкоземельных элементов. Какие реакции протекают в Ni─MH аккумуляторах? На оксидно-никелевом электроде (положительный) протекает реакция: При заряде Ni(OH) 2 + OH −- ⇒ NiOOH + H 2O + e − При разряде NiOOH + H 2O + e − ⇒ Ni(OH) 2 + OH − На электроде из никелевого сплава (отрицательный) протекает реакция: При заряде M + H 2O + e − ⇒ MH + OH −- При разряде MH + OH − ⇒ M + H 2O + e − Суммарная реакция, протекающая в Ni─MH аккумуляторе, выглядит следующим образом: При заряде Ni(OH) 2 + M ⇒ NiOOH + MH При разряде NiOOH + MH ⇒ Ni(OH) 2 + M При этом щелочной электролит не принимает участия в реакции образования тока. После того, как при заряде аккумулятора до уровня 70─80 процентов на оксидно─никелевом запускается выделение кислорода в соответствии со следующей реакцией: 2OH − ⇒ 1/2O 2 + H 2O + 2e − На отрицательном электроде происходит реакция восстановления этого кислорода: 1/2O 2 + H 2O + 2e − ⇒ 2OH − Так описывается процесс перезарядки никель─металлогидридного аккумулятора. Эти реакции образуют собой замкнутую циркуляцию кислорода. В процессе восстановления кислорода происходит увеличение ёмкости металлогидридного электрода благодаря выделению группы ОН − . [banner1]

Источник