Меню

Аккумулятор генератор источники какого тока

Аккумулятор генератор источники какого тока

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Когда скорость химических реакций замедляется, элемент перестает вырабатывать электрический ток. В таких случаях говорят, что элемент разрядился – «села батарейка».

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Существуют другие и типы, например, «квадратная» батарейка 3R12, имеющая ЭДС 4,5 Вольт и используемая в карманных фонариках. А, так же, небольшая батарейка вида pp3 с ЭДС 9 Вольт, часто называемая «Крона» или «Корунд».

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

Читайте также:  Батарея ремонт аккумулятор авто

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено \(\large P_<1>\), по правую сторону — \(\large P_<2>\) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы \(\large \varphi_<1>\) и \(\large \varphi_<2>\). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

\[\large \varphi_ <1>> \varphi_<2>\]

Обратите внимание: источник тока (сторонние силы) заставляет двигаться электроны – отрицательно заряженные частицы, от точки с меньшим потенциалом, в точку с потенциалом большим, а электрический ток направлен в противоположную сторону — от «+» к «-».

Разность потенциалов так же называют электрическим напряжением.

\[\large \Delta \varphi = \varphi_ <2>— \varphi_ <1>= U \]

\(\large \varphi \left( B \right) \) – потенциал, измеряется в Вольтах;

\(\large U \left( B \right) \) – напряжение, измеряется в Вольтах;

Источник



Аккумуляторная батарея и генератор на автомобиле

Аккумуляторная батарея и генератор

Это два главных источниках тока в автомобиле. Многие люди о них слышали, однако далеко не все знают особенности и условия работы последних. У многих из нас автомобили советского производства и, по-видимому, многие из нас сталкивались с проблемой отказа пуска двигателя при низком уровне заряда батареи (аккумуляторной, конечно), особенно зимой. Давайте немного ознакомимся с этими электрическими приборами.

У каждого из нас в автомобиле есть аккумуляторная батарея (в дальнейшем буду говорить или аккумулятор, или батарея, чтобы кнопки на клавиатуре меньше изнашивались). И многие из нас знают, что когда двигатель не работает, то все приборы работают от аккумулятора. Спорить с этим никто не будет.

Аккумуляторная батарея

представляет собой пластиковый (раньше был деревянный) ящик, в котором расположены обычно шесть банок. Они все между собой соединены последовательно, мы же с вами наблюдаем два вывода — плюс и минус. Есть аккумуляторы, которые требуют обслуживания — сверху откручивается крышечка, надо контролировать уровень и плотность электролита, а есть уже такие, где водителям облегчили и упростили эти процедуры — закрытый аккумулятор, там уровень уже будет постоянным.

Вернемся к более старым. Когда есть автомобиль, у него есть фары, освещение в салоне, двигатель. Как многие из нас видели в старых фильмах, как водитель заводил двигатель вручную. Вручную проворачивал коленный вал с помощью рычага, который в народе так и называли « стартер«. Двигатель, получив от силы водителя вращение, подхватывался, заводился и в дальнейшем работал сам. Работает и генератор, который производит ток. Все хорошо, автомобиль работает!

Когда водитель выключает двигатель автомобиля, генератор останавливается, все электричество гаснет, а если нужно снова завести двигатель, водителю нужно опять выйти на улицу и вручную вращать двигатель. Конечно, это создает большой дискомфорт для водителя. Поэтому следовало разработать такие устройства, которые могли бы самостоятельно провернуть двигатель, задать ему такой начальный оборот, чтобы он сам ухватился и начал работать от собственной энергии (сгорание топлива). Как это сделать? Как его прокрутить? Ответ нашли с помощью электрической энергии. К нашему топливному двигателю можно подсоединять электрический двигатель.

Когда нам нужно завести ДВС, то мы подаем ток на электрический двигатель, он начинает вращаться и вращать за собой бензиновый (дизельный ли, без разницы, потому в дальнейшем не буду на это обращать внимание) двигатель. Вращение пошло, наш ДВС завелся, электрический двигатель выключили и все хорошо. Все работает, силу водителя теперь поменяет электрический двигатель. Этот электрический двигатель называется стартером.

Мы о нем ниже еще поговорим, но вернемся ближе к теме. Следовательно, у нас есть электрический двигатель, его поставили с нужной мощностью, чтобы последней хватило на прокрутку ДВС с необходимой скоростью, но у нас нечем вырабатывать ток стартеру. Конечно можно на каждом столбе вешать розетки, протянуть кабель, включить вилку. Стартер от розетки получит питание, раскрутит наш ДВС. Затем выключить провод из розетки и поехать.

Представили картину! Смешно! Верно. Поэтому надо иметь собственную «розетку» в автомобиле. Конечно электростанцию за собой возить немного неудобно, поэтому инженерам пришлось искать другие методы и средства. Было решено следующее: на автомобиле иметь собственный источник электрической энергии, который может ее отдавать независимо от работы всех других систем машины в целом. Поэтому, чтобы там был этот запас энергии, последнюю нужно туда «закачать». Вот это и есть наш аккумулятор. Это такой химический источник энергии, который способен получать и копить в определенных мерах и объемах электрическую энергию (путем превращения в химическую, но это уже мы глубоко влезаем), а при потребности ее отдать. Я не буду рассказывать, что такое КПД аккумулятора, что он с потерями нам меньше энергии вернет, но это нам и не нужно. Нам главное понимать, что есть аккумулятор, его можно зарядить электрической энергией, а когда нам надо, ее оттуда брать и отдавать на стартер.

Стартер нам прокручивает ДВС и мы достигаем цели — водитель завел двигатель без особенных физических нагрузок, не выходя из автомобиля. А в качестве бонуса мы можем эту же электрическую энергию, которую накопили в батарее, брать и на собственные потребности. Не только же у нас стартер есть. У нас есть лампочки в салоне, магнитола и тому подобное. И благодаря аккумулятору мы стали более независимы от ДВС. Нам не обязательно его заводить, чтобы в салоне или кузове автомобиля включить свет.

У нас есть источник тока, который готов нам его отдавать (в определенных конечно объемах).
Какие же требования мы можем предъявить к аккумулятору. Во-первых, он не должен быть большим, он не должен занимать много место, но, при этом, он должен иметь достаточную емкость. Количества электрической энергии, которое мы хотим хранить в аккумуляторе, должно хватать на все наши потребности. А еще важно, чтобы этой энергии в аккумуляторе хватало на многократную попытку запуска двигателя. А не так, чтоб у нас была одна попытка завести двигатель, и, если он не завелся, аккумулятор всю энергию отдал, разрядился, и мы попали.
Нет, копящейся энергии должно хватить на то, чтобы у нас был запас шансов пуска двигателя, в пределах которых возможно устранить неисправность двигателя и повторно его пытаться привести в чувство. Также, кроме подачи тока на стартер, мы, согласно установленных норм и правил, должны сигнализировать автомобиль.

Источник

Принцип работы и устройство современного автомобильного генератора

В стандартном исполнении в автомобиле существуют два источника питания – генератор и аккумулятор. Разница между ними заключается в том, что АКБ накапливает электроэнергию, а автомобильный генератор ее вырабатывает. То есть это устройство преобразует механическую энергию от двигателя в электрическую с целью дальнейшего питания всех потребителей и заряда аккумулятора.

  1. Функции генератора
  2. Виды генераторов
  3. Устройство генератора переменного тока
  4. Корпус
  5. Привод
  6. Ротор
  7. Статор
  8. Выпрямительный блок или диодный мост
  9. Регулятор напряжения
  10. Щеточный узел
  11. Принцип работы
  12. Параметры генератора
  13. Мощность автогенератора
  14. Основные неисправности
  15. Механические неисправности
  16. Электрические неисправности

Функции генератора

При запуске двигателя пусковой ток на стартер подается от аккумулятора. Но сам аккумулятор не вырабатывает энергию, а только ее накапливает и потом отдает. Если использовать для питания всех потребителей только АКБ, то она быстро разрядится. Автомобильный генератор производит электроэнергию, заряжает АКБ и питает бортовую сеть автомобиля во время работы двигателя (при достижении им определенных оборотов вращения коленчатого вала).

фото 1

Генератор начинает вырабатывать электрический ток начиная с частоты вращения холостого хода, однако, на оптимальный режим работы он выходит при достижении двигателем 1600-1800 об/мин и более.

Виды генераторов

Выделяют два вида автомобильных генераторов:

  • постоянного тока;
  • переменного тока.

Первый вид генераторов в настоящее время уже не используется. Такие устройства устанавливались на старых моделях автомобилей (ГАЗ-51, Победа и др.). Они имеют много недостатков, такие как:

  • малая мощность и эффективность;
  • необходимость в постоянном контроле и обслуживании;
  • небольшой срок службы.

Сейчас применяются генераторы переменного тока. Главное их отличие в том, что вне зависимости от режима работы двигателя автомобильную сеть питает постоянный ток. Это достигается благодаря полупроводниковому выпрямителю.

Устройство генератора переменного тока

Работу любого генератора можно сравнить с электродвигателем, который работает в обратном режиме, то есть не потребляет, а вырабатывает ток. По типу конструкции современные генераторы делятся на два вида: компактный и традиционный. Они имеют общее устройство, но различаются в компоновке корпуса, вентилятора, выпрямительного узла и приводного шкива. Также у современных устройств имеется три фазы.

фото 2

Генератор состоит из следующих основных элементов:

  • привод со шкивом, подшипниками и валом;
  • ротор с обмоткой возбуждения и контактными кольцами;
  • статор с сердечником и обмоткой;
  • корпус, состоящий из двух крышек;
  • регулятор напряжения;
  • выпрямительный блок или диодный мост;
  • щеточный узел.

Разберем каждый элемент устройства отдельно и подробно.

Корпус

В корпусе находятся все основные элементы генератора. Он состоит из двух крышек (передняя и задняя). Крышки соединяются между собой болтами. Для изготовления крышек используют легкие сплавы алюминия, которые не намагничиваются и хорошо отводят тепло. В крышках есть вентиляционные отверстия и крепежные фланцы.

Читайте также:  Аккумуляторы давления рулевого управления

В задней крышке установлен диодный мост и щеткодержатель со щетками. Также в задней крышке расположен выводной контакт, по которому ток поступает от генератора.

Привод

Вращение от коленчатого вала передается на шкив генератора и вращает ротор. Частота вращения шкива больше частоты вращения коленвала в 2-3 раза. Крутящий момент от двигателя передается посредством ременной передачи. Могут использоваться поликлиновый и клиновый ремень в зависимости от конструкции. Поликлиновый ремень считается более универсальным и современным.

Ротор

На валу ротора находится обмотка возбуждения, которая создает магнитное поле и, по сути, представляет собой обычный электромагнит. Обмотка находится между двух полюсных половин (сердечников), необходимых для регулирования и направления магнитного поля. Каждая из половин имеет по шесть треугольных выступов, называемых клювами. Также на валу ротора расположены два медных контактных кольца. Иногда они изготавливаются из стали или латуни. Через контактные кольца на обмотку возбуждения поступает питание от аккумулятора. Контакты обмотки припаяны к кольцам.

фото 3

На переднем конце вала ротора находится приводной шкив, а на другом крепится крыльчатка вентилятора. Их может быть две. Они нужны для охлаждения внутренних деталей генератора. Также на обоих концах ротора установлены необслуживаемые шариковые подшипники.

Статор

фото 4

Конструктивно статор имеет форму кольца. Это основная деталь, служащая для создания переменного тока от магнитного поля ротора. Состоит из обмотки и сердечника. В свою очередь, сердечник состоит из соединённых стальных пластин, в которых образуются 36 пазов. В пазы навивается три обмотки, которые образуют трехфазное соединение. Может быть две схемы соединения обмоток: «звезда» и «треугольник». По схеме «звезда» концы каждой из трех обмоток соединены в одной точке. По схеме «треугольник» концы обмоток выводятся отдельно.

Выпрямительный блок или диодный мост

Выпрямительный блок выполняет задачу по преобразованию переменного тока генератора в постоянный, который необходим для питания бортовой сети автомобиля. Другими словами, он выдает напряжение стабильной и одинаковой величины.

фото 5

Блок также называют диодным мостом, который состоит из двух радиаторных пластин (положительной и отрицательной) и диодов. На каждую фазу приходится по два диода. Сами диоды герметично вмонтированы в пластины. Диодный мост имеет форму подковы.

С обмотки статора ток поступает на диодный мост, затем «выпрямляется», и подается на выводной контакт на задней крышке.

Через диоды ток проходит только в одном направлении, при этом отсекаются токи обратной полярности. Диодный мост может находиться в корпусе генератора, а может быть вынесен за корпус. Но чаще всего он крепится на внутренней стороне задней крышки.

Регулятор напряжения

Регулятор поддерживает напряжение генератора в определенных пределах. В современных моделях применяются полупроводниковые электронные регуляторы напряжения. Они устанавливаются сверху блока щеткодержателей.

фото 6

Когда двигатель работает на больших оборотах, то напряжение на обмотке статора может доходить до 16В. Такое напряжение не должно поступать в бортовую сеть. Чтобы это исключить, регулятор напряжения, получая ток от АКБ, будет снижать его значение. Малый ток на обмотке ротора будет создавать такое же малое магнитное поле. Это значит, что на обмотке статора будет понижаться напряжение.

Щеточный узел

Щеточный узел в современных генераторах объединен с регулятором напряжения в один неразборный механизм. Он передает ток возбуждения на медные контактные кольца ротора. Это простая конструкция, которая состоит из щеткодержателя, двух графитовых щеток и прижимающих пружин.

Принцип работы

Теперь разберем подробнее работу генератора переменного тока в автомобиле. При включении зажигания, на щеточный узел подается ток от аккумуляторной батареи. Через щеточный узел он попадает на медные контактные кольца, а затем на обмотку возбуждения ротора. Напомним, что ротор, по сути, является электромагнитом, который создает магнитное поле. Коленчатый вал через шкив и ременную передачу начинает вращать ротор. Вокруг ротора расположен статор, который от вращения начинает вырабатывать переменный ток. Когда вращение ротора достигает определенной частоты, обмотка возбуждения питается от самого генератора.

Через диодный мост переменный ток “выпрямляется” и преобразуется в постоянный, необходимый для питания бортовой сети. Так автомобильный генератор обеспечивает питание потребителей и подзаряжает аккумулятор. Регулятор напряжения изменяет работу обмотки возбуждения при возрастании частоты вращения ротора. Таким образом поддерживается стабильная нагрузка.

В салоне автомобиля на приборной панели есть контрольная лампа генератора, которая показывает состояние устройства. Например, лампа может загореться при обрыве ремня. Тогда питание сети будет идти только через аккумулятор. Продолжительность работы в этом случае будет зависеть от уровня заряда АКБ.

Параметры генератора

Работу генератора оценивают по нескольким параметрам:

  • номинальный ток и номинальное напряжение;
  • номинальная частота возбуждения;
  • частота самовозбуждения;
  • коэффициент полезного действия (КПД).

Номинальное напряжение для бортовой сети автомобиля от генератора 12В или 24В. Токоскоростная характеристика показывает зависимость силу тока от частоты вращения генератора.

фото 7

Напряжение генератора можно измерить мультиметром. При всех выключенных потребителях без нагрузки на холостом ходу мультиметр должен показывать напряжение в пределах 14,3В – 15,5В. Если напряжение после запуска двигателя свыше 14В, то это может говорить о разряде АКБ и зарядке его генератором. При поочередном включении потребителей (фары, подогрев, кондиционер и т.д.) напряжение уменьшается примерно на 0,2 после каждого включения. Но в итоге напряжение не должно снижаться ниже 12,8В. Если значение меньше, то аккумулятор начнет разряжаться. Если напряжение, наоборот, сильно высокое (14В и выше), то это может привести к выходу АКБ из строя. При этом на выходе самого аккумулятора напряжение должно быть в пределах 12,6В – 12,7В.

Напряжение генератора под нагрузкой может отличаться от номинальных значений 12В. После включения всех потребителей тока значение должно быть в пределах 13,5В – 14В. Если ниже, то это может указывать на неисправность устройства. Допустимым пределом считается 13В.

На картинке ниже показана подробная схема подключения генератора в автомобиле.

фото 8

Мощность автогенератора

Если включить все энергоемкие приборы в автомобиле, то генератор может не справляться с нагрузкой и часть энергии будет отдавать аккумулятор.

Чтобы рассчитать мощность генератора достаточно воспользоваться простой формулой из школьного курса P = I * U, где Р – мощность, I – сила тока, U – напряжение.

Мы узнали, что напряжение на выходе генератора должно быть в районе 13,5В – 14,2В. Сила тока у разных моделей может отличаться. В среднем это от 80А до 140А. Возьмем среднее значение в 100А.

По формуле получаем 13,5В*100А = 1 350 Вт или 1,35 КВт. Это и есть мощность генератора, которая измеряется в Ваттах. Нужно также учитывать, что это максимальное значение, которое достигается при определенных оборотах двигателя, как правило, от 3000 об/мин и выше. На холостом ходе выдаваемая мощность равняется 75% от максимально возможной. Считается, что для автомобиля хватает 80А. Если применить более мощный автогенератор, то бортовая сеть может не справиться с нагрузкой. Нужно это учитывать. Большая мощность не всегда идет на пользу.

Основные неисправности

Устройство довольно надежное и должно работать продолжительное время, но некоторые компоненты могут выходить из строя по разным причинам. Неисправности могут иметь механический или электрический характер.

Механические неисправности

Главной возможной поломкой может быть обрыв приводного ремня. В этом случае вращение от коленвала на ротор не будет передаваться. Всю нагрузку на себя берет аккумулятор, который начнет разряжаться. Это покажет контрольная лампа в салоне автомобиля. Чтобы избежать обрыва ремня, нужно периодически проверять его состояние и натяжение.

Также может случиться простой износ графитовых щеток. В этом случае надо менять весь щеточный узел.

Электрические неисправности

Неполадки с электрикой в генераторе случаются нередко, и заметить их трудно. Может возникнуть замыкание в обмотках возбуждения ротора или статора, обрыв обмотки. Может выйти из строя регулятор напряжения, что чревато большими проблемами для всей электроники и АКБ. Также случается так называемый пробой диодного моста по различным причинам. Нельзя отключать генератор или АКБ во время работы двигателя. Также нужно следить за надежностью соединений, чистить клеммы и т.д.

Каждому водителю нужно знать устройство и принцип работы автомобильного генератора. Это поможет избежать многих проблем, которые могут возникнуть с устройством. Нужно регулярно следить за компонентами генератора. Проверять натяжение и состояние приводного ремня, крепление устройства, напряжение и другое. При правильной эксплуатации устройство прослужит исправно долгие годы.

Источник

Виды источников тока

Источники тока используют для длительного поддержания электрического поля и получения электрического тока. Все они могут иметь различные принципы работы, внешний вид, конструкцию и размеры.

Источники тока – это устройства:
— способные создавать и поддерживать электрический ток;
— в них сторонние силы совершают работу по перемещению зарядов против электрических сил;
— а механическая, внутренняя, химическая или иная энергия превращается в электрическую.

Какие виды источников тока существуют

Энергия не может возникать из ничего. Об этом говорит закон сохранения энергии. Во всех без исключения источниках, электроэнергия создается за счет других ее видов.

В зависимости от того, какая именно энергия превращается в электрическую, выделяют такие виды (рис. 1) источников:

  1. механические – генераторы,
  2. тепловые – термопары, термогенераторы,
  3. световые (фотоэлектрические) – солнечные батареи и фотоэлементы,
  4. химические – гальванические элементы и аккумуляторы.

Рассмотрим подробнее эти виды.

Механические источники

Электрофорная машина – один из механических источников тока (рис. 2), применяемых более столетия.

С помощью этого устройства механическая энергия вращающихся дисков преобразовывается в электрическую энергию. При этом, происходит разделение положительных и отрицательных зарядов.

Превращение энергии вращения (механической) в энергию электрического тока происходит в различных генераторах.

В конструкции любого из них присутствуют элементы, создающие магнитное поле в пространстве вокруг проводника.

Например, электрический генератор для велосипеда (рис. 3), включает в себя кольцевой магнит и проволочную обмотку, расположенную рядом с ним.

Во время движения велосипеда магнит, расположенный внутри, вращается. Изменяющееся магнитное поле заставляет двигаться электроны по обмотке. Если к ее выводам подключить лампочку, она загорится, так как по цепи потечет электрический ток.

Мускульной силы человека хватает, чтобы зажечь лампочку для карманного фонаря. Однако, ее недостаточно, чтобы вырабатывать больше электроэнергии. Например, чтобы нагреть утюг и одновременно с этим зажечь несколько бытовых ламп накаливания.

Поэтому, для бытовых нужд и нужд промышленности в электрическую энергию превращают энергию сгорающего топлива, а не энергию сокращения мускул.

На тепловых, атомных и гидроэлектростанциях установлены мощные генераторы. Они могут отдавать потребителям токи в тысячи Ампер. А масса некоторых достигает десятков тонн.

На таких электростанциях превращение энергии происходит в несколько этапов. Сначала энергия горящего топлива превращается во внутреннюю энергию горячей воды, а затем — в механическую и, в конечном итоге, в электрическую.

Существуют, так же, устройства, предназначенные для бытового использования. Например, небольшие генераторы, массой в несколько килограммов, оснащенные бензиновым мотором (рис. 4).

Они, так же, преобразуют внутреннюю энергию топлива в механическую энергию вращения вала двигателя, который соединяется с генератором. А затем энергия вращения с помощью генератора превращается в электрическую энергию.

Тепловые источники

К тепловым относят различные термоэлементы. Термоэлемент — это прибор в котором, тепловая энергия, получаемая от нагревателя, превращается сначала во внутреннюю энергию вещества, а затем — в электрическую энергию.

Читайте также:  Мир аккумуляторов город старый оскол

Один из таких элементов называют термопарой (рис. 5). Термопара состоит из двух различных металлических проволок, спаянных вместе. Если нагреть место их соприкосновения, то на свободных концах проволочек можно обнаружить электрическое напряжение (ссылка).

Если свободные концы термопары присоединить к потребителю тока, то под действием тепловой энергии по замкнутой цепи побегут электроны, то есть, возникнет электрический ток.

Таким образом, эта незамысловатая конструкция преобразовывает внутреннюю энергию нагреваемых металлов в электрическую энергию.

Фотоэлектрические источники

Атомы некоторых веществ под действием видимого света способны терять электроны. Например, селен, кремний, оксиды цинка, меди, висмута. На основе этих и, некоторых других веществ создают источники, генерирующие электрический ток под действием (рис. 6) света.

Эти источники используют фотоэлектрический эффект (сокращенно — фотоэффект) (ссылка). В них энергия света преобразуется в электрическую.

Существует два вида фотоэффекта – внутренний, который используется в полупроводниках (ссылка) и внешний, используемый в вакуумных фотоэлементах на основе различных металлов.

Вакуумные фотоэлементы

В вакуумном фотоэлементе свет попадает на пластинку металла и выбивает электроны с ее поверхности. Такую пластинку называют катодом.

Выбитые электроны улавливаются другим электродом. Его называют анодом и обычно выполняют в виде металлической сетки.

Оба электрода находятся в стеклянном баллоне из которого удалили воздух. Дело в том, что молекулы воздуха могли бы помешать движению электронов, вылетевших из пластинки. Чтобы этого не происходило, воздух из баллона откачивают (рис. 7).

Таким образом, под воздействием света между катодом и анодом в вакууме возникает поток заряженных частиц. Они движутся направлено от катода к аноду. Значит, в фотоэлементе под действием света возникает электрический ток. Так световая энергия переходит в электрическую.

Солнечные батареи

Еще одним источником тока, в котором ток возникает за счет световой энергии, являются, так называемые, солнечные батареи. Их изготавливают из полупроводниковых пластин (рис. 8).

Падающий свет из полупроводника электроны не выбивает. А вызывает переход электронов в такое состояние, в котором у них появляется дополнительная энергия и они могут свободно передвигаться по полупроводнику, создавая электрический ток.

Химические источники

Если опустить два кусочка различных металлов (например, железа и меди) в емкость с проводящей жидкостью, можно получить химический источник тока.

В качестве проводящей жидкости можно использовать, например, лимонный сок. Воткнув в лимон два гвоздика из различных металлов (рис. 9) и подключив к ним гальванометр, можно обнаружить, что через гальванометр потечет электрический ток.

Такую конструкцию можно считать простейшим химическим источником тока. Гвоздики в нем — это электроды, а лимонная кислота – электролит.

Примечания:

  1. Проводящие жидкости называют электролитами.
  2. Существует, так называемый ряд электрохимических напряженый металлов. Наибольшее напряжение дают источники, построенные с применением металлов, расположенных в различных концах данного ряда.

Самым первым химических источником тока был Вольтов столб.

Алессандро Вольта и его первый гальванический элемент

Дело в том, что до исследований, проведенных А. Вольта, способ получить электрический ток был известен. Однако, эксперименты с электричеством, проводимые в лабораториях другими учеными, создавали ток всего на доли секунды. Источников, способных создавать ток, длившийся хотя бы единицы секунд, не существовало.

В 1800 году Алессандро Вольта изобрел первый прибор, создававший электрический ток продолжительное время. Этот прибор в честь создателя называют Вольтовым столбом.

Ученый определил, что для получения гальванического (электрического) эффекта нужны два разных метала и проводящая жидкость.

Он длительное время потратил на эксперименты, использовал различные металлы и исследовал их свойства.

В процессе работы Вольта сделал вертикальный столбик, укладывая поочередно медные монеты и цинковые пластинки. Между металлами он укладывал кожаные кружочки, вымоченные в рассоле (рис. 10).

Так он создал первую в мире электрическую батарею. Принцип ее работы — превращение химической энергии в электрическую.

Соединяя проволокой два конца собранного столбика, он наблюдал ее нагревание и так определял действие электрического тока.

А чтобы сравнить, больше, или меньше электричества вырабатывал тот или иной столбик, Алессандро пользовался своим языком. Попросту, касался языком выводов созданного им гальванического элемента.

Такой столбик, при высоте, равной половине метра, вырабатывал напряжение, которое было довольно чувствительным.

В марте 1800 года Вольта направил письмо в Лондонское Королевское общество, в котором подробно описал результаты своей работы. А уже в июне оно было признано сенсационным среди ученых того времени.

Наполеон пригласил А. Вольта в Париж и лично присутствовал во время доклада и опыта, демонстрируемого им, а после наградил изобретателя.

Это изобретение сделало автора знаменитым. А благодаря ему в скором времени были совершены другие открытия в области физики.

Какие открытия были совершены благодаря столбу Вольта

В том же году с помощью Вольтова столба вода была разложена на водород и кислород. Это сделали Карлайл и Николсон.

А спустя три года, в 1803 году, Василий Петров создал самый большой в мире столб. Он выдавал напряжение 1700 вольт и содержал более 4000 медных и цинковых кругов. Этот столб помог получить электрическую дугу, которая применяется в электросварке металлов.

После работ Петрова в России стали применять электрические запалы для взрывчатых веществ.

А спустя еще четыре года, в 1807 году, ученым по фамилии Дэви был открыт металлический калий.

Благодаря способности Вольтова столба создавать электрический ток продолжительное время – в течение нескольких часов, началось широкое применение электричества.

По истечении этого времени, на металлах появлялся окисел, препятствующий выработке электрического тока. Нужно было разбирать конструкцию и протирать металлы, избавляя их от этого окисла. А кусочки кожи необходимо было время от времени смачивать рассолом.

Сухой гальванический элемент — батарейка

Значительно позже открытия Вольта, во второй половине 1880-х годов, инженером из Германии Карлом Гасснером был создан сухой гальванический элемент.

Сухим элемент был назван потому, что в качестве электролита в нем использовалась не жидкость, а гелеобразный состав. Такие элементы можно наклонять и даже переворачивать, не боясь пролить электролит. Поэтому, они значительно удобнее жидкостных.

Внутри элемента происходят химические превращения. Эти превращения являются экзотермическими, так как протекают с выделением энергии. Затем внутренняя энергия источника переходит в электрическую.

К примеру, в современном сухом гальваническом элементе (рис. 11), цинк реагирует с хлоридом аммония и при этом получает отрицательный электрический заряд.

Протекая, такие реакции вызывают расходование некоторых частей источника. Например, цинкового электрода.

Из-за этого, в гальванических элементах химические реакции будут необратимыми. Так как, спустя некоторое время, для нормального протекания химических превращений, не будет хватать ресурсов.

Когда скорость химических реакций замедляется, элемент перестает вырабатывать электрический ток. В таких случаях говорят, что элемент разрядился – «села батарейка».

Отработанные гальванические элементы нужно утилизировать. Это позволит использовать вновь некоторые их компоненты, а не загрязнять окружающую среду.

Мировая промышленность выпускает ассортимент стандартизированных элементов питания (рис. 12).

Например, тип АА – пальчиковая батарейка, или ААА – тонкая пальчиковая. Так же, существуют типоразмеры, обозначаемые C D и N. Они имеют ЭДС 1,5 Вольта.

Существуют другие и типы, например, «квадратная» батарейка 3R12, имеющая ЭДС 4,5 Вольт и используемая в карманных фонариках. А, так же, небольшая батарейка вида pp3 с ЭДС 9 Вольт, часто называемая «Крона» или «Корунд».

Гальванические элементы на электрических схемах обозначают специальными значками.

Аккумуляторы и их виды

Устройство аккумулятора внешне напоминает устройство гальванического элемента. Присутствует корпус, в котором находятся две пластины из разных металлов. Одна служит положительным электродом, а другая – отрицательным. Эти пластины помещены в электролит (рис. 13).

Однако, аккумуляторы, в отличие от гальванических элементов, являются многоразовыми устройствами.

Свое название они получили из-за того, что могут аккумулировать, то есть, накапливать электрическую энергию. А затем, отдавать накопленную энергию потребителям.

Химические реакции в аккумуляторах могут протекать в двух направлениях (зарядка — разрядка).

Перед использованием аккумулятор необходимо зарядить. Для этого используют специальные источники тока, которые называют зарядными устройствами. Они пропускают через аккумулятор ток зарядки.

Под воздействием этого тока в аккумуляторе протекают химические реакции, во время которых он накапливает электрические заряды. Один электрод заряжается положительно, а другой – отрицательно.

После, подключив к заряженному аккумулятору потребитель тока, можно использовать накопленную им энергию.

Называть аккумуляторы принято:
— по видам используемых жидкостей — кислотные, щелочные.
— либо по названию металлов, используемых в качестве электродов — свинцовые, железоникелевые, литиевые, и т. п.

В качестве пластин — электродов используют металлы: свинец, железо, литий, титан, кобальт, кадмий, никель, цинк, серебро, алюминий.

Существуют аккумуляторы с гелеобразным электролитом. Такие аккумуляторы можно наклонять в различные стороны, не боясь утечки электролита. Например, литий-полимерные батареи, используемые в мобильных телефонах.

Примечание: Чем больше геометрические размеры электродов источника, тем большую силу тока в полезной нагрузке он может обеспечить. Поэтому, аккумуляторы для автомобилей с ЭДС 12 и 24 Вольта, рассчитанные на большие токи нагрузки, имеют массу от 10 килограммов и большую.

Аналогия между источником тока и водяным насосом

Аналогию с потоком жидкости часто применяют по отношению к электрическому току.

Независимо от того, какой вид энергии превращается в электрическую, принцип работы источника тока чем-то напоминает работу водяного насоса. Различия в том, что источник тока перекачивает заряды, а не жидкость.

Рассмотрим замкнутый контур, состоящий из трубы и водяного насоса, который способен привести в движение воду, так, чтобы она начала циркулировать по трубе (рис. 14а).

Частицы воды будут двигаться и, ток воды будет циркулировать за счет разности давлений, которую будет создавать и поддерживать насос.

На рисунке 14 кружком с треугольником обозначен насос. Направление движения воды отмечено стрелкой. По левую сторону от насоса давление обозначено \(\large P_<1>\), по правую сторону — \(\large P_<2>\) (рис. 14а).

С помощью неравенства

отмечено, что давление слева от насоса будет больше давления справа.

Подобно движению частиц воды, заряды придут в движение и электрический ток будет циркулировать по замкнутой цепи за счет разности потенциалов, которую будет создавать включенная в эту цепь батарейка (рис. 14б) — источник тока.

Сила, перемещающая заряды во внешней цепи, появляется благодаря тому, что источник тока создает разность потенциалов на своих выводах и электрическое поле.

Слева и справа от источника отмечены потенциалы \(\large \varphi_<1>\) и \(\large \varphi_<2>\). При чем, потенциал слева от источника больше потенциала справа.

Это отмечено неравенством

\[\large \varphi_ <1>> \varphi_<2>\]

Обратите внимание: источник тока (сторонние силы) заставляет двигаться электроны – отрицательно заряженные частицы, от точки с меньшим потенциалом, в точку с потенциалом большим, а электрический ток направлен в противоположную сторону — от «+» к «-».

Разность потенциалов так же называют электрическим напряжением.

\[\large \Delta \varphi = \varphi_ <2>— \varphi_ <1>= U \]

\(\large \varphi \left( B \right) \) – потенциал, измеряется в Вольтах;

\(\large U \left( B \right) \) – напряжение, измеряется в Вольтах;

Источник